Addressing Systematic Missing Data in the Context of Causally Interpretable Meta-analysis

被引:4
|
作者
Barker, David H. [1 ,2 ]
Bie, Ruofan [3 ]
Steingrimsson, Jon A. [3 ]
机构
[1] Brown Univ, Dept Psychiat & Human Behav, Warren Alpert Med Sch, Providence, RI 02912 USA
[2] Bradley Hasbro Childrens Res Ctr, Providence, RI 02903 USA
[3] Brown Univ, Dept Biostat, Providence, RI USA
关键词
Systematic missing data; Causal inference; Individual participant data; INDIVIDUAL PARTICIPANT DATA; MULTIPLE IMPUTATION; RANDOMIZED-TRIAL;
D O I
10.1007/s11121-023-01586-2
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Evidence synthesis involves drawing conclusions from trial samples that may differ from the target population of interest, and there is often heterogeneity among trials in sample characteristics, treatment implementation, study design, and assessment of covariates. Stitching together this patchwork of evidence requires subject-matter knowledge, a clearly defined target population, and guidance on how to weigh evidence from different trials. Transportability analysis has provided formal identifiability conditions required to make unbiased causal inference in the target population. In this manuscript, we review these conditions along with an additional assumption required to address systematic missing data. The identifiability conditions highlight the importance of accounting for differences in treatment effect modifiers between the populations underlying the trials and the target population. We perform simulations to evaluate the bias of conventional random effect models and multiply imputed estimates using the pooled trials sample and describe causal estimators that explicitly address trial-to-target differences in key covariates in the context of systematic missing data. Results indicate that the causal transportability estimators are unbiased when treatment effect modifiers are accounted for in the analyses. Results also highlight the importance of carefully evaluating identifiability conditions for each trial to reduce bias due to differences in participant characteristics between trials and the target population. Bias can be limited by adjusting for covariates that are strongly correlated with missing treatment effect modifiers, including data from trials that do not differ from the target on treatment modifiers, and removing trials that do differ from the target and did not assess a modifier.
引用
收藏
页码:1648 / 1658
页数:11
相关论文
共 50 条
  • [1] Addressing Systematic Missing Data in the Context of Causally Interpretable Meta-analysis
    David H. Barker
    Ruofan Bie
    Jon A. Steingrimsson
    Prevention Science, 2023, 24 : 1648 - 1658
  • [2] Causally interpretable meta-analysis combining aggregate and individual participant data
    Rott, Kollin W.
    Clark, Justin M.
    Murad, M. Hassan
    Hodges, James S.
    Huling, Jared D.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2025,
  • [3] Causally Interpretable Meta-analysis: Application in Adolescent HIV Prevention
    Barker, David H.
    Dahabreh, Issa J.
    Steingrimsson, Jon A.
    Houck, Christopher
    Donenberg, Geri
    DiClemente, Ralph
    Brown, Larry K.
    PREVENTION SCIENCE, 2022, 23 (03) : 403 - 414
  • [4] Causally interpretable meta-analysis: Clearly defined causal effects and two case studies
    Rott, Kollin W.
    Bronfort, Gert
    Chu, Haitao
    Huling, Jared D.
    Leininger, Brent
    Murad, Mohammad Hassan
    Wang, Zhen
    Hodges, James S.
    RESEARCH SYNTHESIS METHODS, 2024, 15 (01) : 61 - 72
  • [5] What works for whom in pediatric OCD: description of causally interpretable meta-analysis methods and report on trial data harmonization
    Norris, Lesley A.
    Barker, David H.
    Rosen, Ariella R.
    Kemp, Joshua
    Freeman, Jennifer
    Benito, Kristen G.
    Project Harmony Team
    PSYCHOLOGICAL MEDICINE, 2025, 55
  • [6] Toward Causally Interpretable Meta-analysis Transporting Inferences from Multiple Randomized Trials to a New Target Population
    Dahabreh, Issa J.
    Petito, Lucia C.
    Robertson, Sarah E.
    Hernan, Miguel A.
    Steingrimsson, Jon A.
    EPIDEMIOLOGY, 2020, 31 (03) : 334 - 344
  • [7] Efficient and robust methods for causally interpretable meta-analysis: Transporting inferences from multiple randomized trials to a target population
    Dahabreh, Issa J.
    Robertson, Sarah E.
    Petito, Lucia C.
    Hernan, Miguel A.
    Steingrimsson, Jon A.
    BIOMETRICS, 2023, 79 (02) : 1057 - 1072
  • [8] Combining multiple imputation and meta-analysis with individual participant data
    Burgess, Stephen
    White, Ian R.
    Resche-Rigon, Matthieu
    Wood, Angela M.
    STATISTICS IN MEDICINE, 2013, 32 (26) : 4499 - 4514
  • [9] Adjusting for misclassification of an exposure in an individual participant data meta-analysis
    de Jong, Valentijn M. T.
    Campbell, Harlan
    Maxwell, Lauren
    Jaenisch, Thomas
    Gustafson, Paul
    Debray, Thomas P. A.
    RESEARCH SYNTHESIS METHODS, 2023, 14 (02) : 193 - 210
  • [10] Course of serological tests in treated subjects with chronic Trypanosoma cruzi infection: A systematic review and meta-analysis of individual participant data
    Sguassero, Yanina
    Roberts, Karen N.
    Harvey, Guillermina B.
    Comande, Daniel
    Ciapponi, Agustin
    Cuesta, Cristina B.
    Aguiar, Camila
    de Castro, Ana M.
    Danesi, Emmaria
    de Andrade, Ana L.
    de Lana, Marta
    Escriba, Josep M.
    Fabbro, Diana L.
    Fernandes, Cloe D.
    Flores-Chavez, Maria
    Hasslocher-Moreno, Alejandro M.
    Jackson, Yves
    Lacunza, Carlos D.
    Machado-de-Assis, Girley F.
    Maldonado, Marisel
    Meira, Wendell S. F.
    Molina, Israel
    Monje-Rumi, Maria M.
    Munoz-San Martin, Catalina
    Murcia, Laura
    de Castro, Cleudson Nery
    Sanchez Negrette, Olga
    Segovia, Manuel
    Silveira, Celeste A. N.
    Solari, Aldo
    Steindel, Mario
    Streiger, Mirtha L.
    Vera de Bilbao, Ninfa
    Zulantay, Ines
    Sosa-Estanib, Sergio
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2018, 73 : 93 - 101