Classification of Clinical Notes from a Heart Failure Telehealth Network

被引:0
作者
Wiesmueller, Fabian [1 ,2 ,3 ]
Lauschenski, Aaron [2 ]
Baumgartner, Martin [2 ,3 ]
Hayn, Dieter [1 ,2 ]
Kreiner, Karl [2 ]
Fetz, Bettina [4 ]
Brunelli, Luca [5 ]
Poelzl, Gerhard [5 ]
Pfeifer, Bernhard [6 ,7 ]
Neururer, Sabrina [6 ,7 ]
Schreier, Guenter [2 ,3 ]
机构
[1] Ludwig Boltzmann Inst Digital Hlth & Prevent, Salzburg, Austria
[2] AIT Austrian Inst Technol, Graz, Austria
[3] Graz Univ Technol, Inst Neural Engn, Graz, Austria
[4] Landesinst Integrierte Versorgung LIV Tirol, Innsbruck, Austria
[5] Med Univ Innsbruck, Dept Internal Med 3, Cardiol & Angiol, Innsbruck, Austria
[6] Tirol Kliniken GmbH, Tyrolean Fed Inst Integrated Care, Innsbruck, Austria
[7] UMIT TIROL Private Univ Hlth Sci & Hlth Technol, Div Digital Med & Telehlth, Hall In Tirol, Tyrol, Austria
来源
CARING IS SHARING-EXPLOITING THE VALUE IN DATA FOR HEALTH AND INNOVATION-PROCEEDINGS OF MIE 2023 | 2023年 / 302卷
关键词
Clinical notes; Annotation; Text classification; Natural Language Processing; HEALTH;
D O I
10.3233/SHTI230270
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Heart failure is a common chronic disease which is associated with high re-hospitalization and mortality rates. Within the telemedicine-assisted transitional care disease management program HerzMobil, monitoring data such as daily measured vital parameters and various other heart failure related data are collected in a structured way. Additionally, involved healthcare professionals communicate with one another via the system using free-text clinical notes. Since manual annotation of such notes is too time-consuming for routine care applications, an automated analysis process is needed. In the present study, we established a ground truth classification of 636 randomly selected clinical notes from HerzMobil based on annotations of 9 experts with different professional background (2 physicians, 4 nurses, and 3 engineers). We analyzed the influence of the professional background on the inter annotator reliability and compared the results with the accuracy of an automated classification algorithm. We found significant differences depending on the profession and on the category. These results indicate that different professional backgrounds should be considered when selecting annotators in such scenarios.
引用
收藏
页码:803 / 807
页数:5
相关论文
共 14 条
  • [1] Impact Analysis of De-Identification in Clinical Notes Classification
    Baumgartner, Martin
    Schreier, Guenter
    Hayn, Dieter
    Kreiner, Karl
    Haider, Lukas
    Wiesmueller, Fabian
    Brunelli, Luca
    Poelzl, Gerhard
    [J]. DHEALTH 2022-PROCEEDINGS OF THE 16TH HEALTH INFORMATICS MEETS DIGITAL HEALTH CONFERENCE, 2022, 293 : 189 - 196
  • [2] Classification of neurologic outcomes from medical notes using natural language processing
    Fernandes, Marta B.
    Valizadeh, Navid
    Alabsi, Haitham S.
    Quadri, Syed A.
    Tesh, Ryan A.
    Bucklin, Abigail A.
    Sun, Haoqi
    Jain, Aayushee
    Brenner, Laura N.
    Ye, Elissa
    Ge, Wendong
    Collens, Sarah, I
    Lin, Stacie
    Das, Sudeshna
    Robbins, Gregory K.
    Zafar, Sahar F.
    Mukerji, Shibani S.
    Westover, M. Brandon
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 214
  • [3] George Amy, 2021, AMIA Jt Summits Transl Sci Proc, V2021, P229
  • [4] Predictive analytics for data driven decision support in health and care
    Hayn, Dieter
    Veeranki, Sai
    Kropf, Martin
    Eggerth, Alphons
    Kreiner, Karl
    Kramer, Diether
    Schreier, Guenter
    [J]. IT-INFORMATION TECHNOLOGY, 2018, 60 (04): : 183 - 194
  • [5] Kong HJ, 2019, HEALTHC INFORM RES, V25, P1
  • [6] Twister: A Tool for Reducing Screening Time in Systematic Literature Reviews
    Kreiner, Karl
    Hayn, Dieter
    Schreier, Guenter
    [J]. DECISION SUPPORT SYSTEMS AND EDUCATION: HELP AND SUPPORT IN HEALTHCARE, 2018, 255 : 5 - 9
  • [7] Identifying direct temporal relations between time and events from clinical notes
    Lee, Hee-Jin
    Zhang, Yaoyun
    Jiang, Min
    Xu, Jun
    Tao, Cui
    Xu, Hua
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2018, 18
  • [8] A NLP Pipeline for the Automatic Extraction of Microorganisms Names from Microbiological Notes
    Mora, Sara
    Attene, Jacopo
    Gazzarata, Roberta
    Parruti, Giustino
    Giacomini, Mauro
    [J]. PHEALTH 2021, 2021, 285 : 153 - 158
  • [9] 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure
    Ponikowski, Piotr
    Voors, Adriaan A.
    Anker, Stefan D.
    Bueno, Hector
    Cleland, John G. F.
    Coats, Andrew J. S.
    Falk, Volkmar
    Ramon Gonzalez-Juanatey, Jose
    Harjola, Veli-Pekka
    Jankowska, Ewa A.
    Jessup, Mariell
    Linde, Cecilia
    Nihoyannopoulos, Petros
    Parissis, John T.
    Pieske, Burkert
    Riley, Jillian P.
    Rosano, Giuseppe M. C.
    Ruilope, Luis M.
    Ruschitzka, Frank
    Rutten, Frans H.
    van der Meer, Peter
    [J]. EUROPEAN HEART JOURNAL, 2016, 37 (27) : 2129 - U130
  • [10] The dependence of Cohen's kappa on the prevalence does not matter
    Vach, W
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2005, 58 (07) : 655 - 661