Homogeneous wet-spinning construction of skin-core structured PANI/cellulose conductive fibers for gas sensing and e-textile applications

被引:23
作者
Wang, Chuang [1 ]
Liao, Yiqi [1 ]
Yu, Hou-Yong [1 ,2 ]
Dong, Yanjuan [1 ]
Yao, Juming [3 ]
机构
[1] Zhejiang Sci Tech Univ, Key Lab Intelligent Text & Flexible Interconnect Z, Hangzhou 310018, Peoples R China
[2] Donghua Univ, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[3] Ningbo Univ, Sch Mat Sci & Chem Engn, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
Regenerated cellulose fiber; Polyaniline; Composite fibers; Gas sensing; E-textiles; POLYANILINE NANOCOMPOSITE; COMPOSITE FIBERS; CELLULOSE; SENSORS; FABRICATION; DISSOLUTION; NANOFIBERS; MORPHOLOGY; STEP;
D O I
10.1016/j.carbpol.2023.121175
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Fiber-based wearable electronic textiles have broad applications, but non-degradable substrates may contribute to electronic waste. The application of cellulose-based composite fibers as e-textiles is hindered by the lack of fast and effective preparation methods. Here, we fabricated polyaniline (PANI)/cellulose fibers (PC) with a unique skin-core structure through a wet-spinning homogeneous blended system. The conductive network formation was enabled at a mere 1 wt% PANI. Notably, PC15 (15 wt% PANI) shows higher electrical conductivity of 21.50 mS cm-1. Further, PC15 exhibits excellent ammonia sensing performance with a sensitivity of 2.49 %/ppm and a low limit of detection (LOD) of 0.6 ppm. Cellulose-based composite fibers in this work demonstrate good gas sensing and anti-static properties as potential devices for smart e-textiles.
引用
收藏
页数:12
相关论文
共 57 条
  • [1] Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy
    Åkerholm, M
    Hinterstoisser, B
    Salmén, L
    [J]. CARBOHYDRATE RESEARCH, 2004, 339 (03) : 569 - 578
  • [2] Simple and low-temperature polyaniline-based flexible ammonia sensor: a step towards laboratory synthesis to economical device design
    Bandgar, D. K.
    Navale, S. T.
    Nalage, S. R.
    Mane, R. S.
    Stadler, F. J.
    Aswal, D. K.
    Gupta, S. K.
    Patil, V. B.
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (36) : 9461 - 9468
  • [3] The stability of polyaniline in strongly alkaline or acidic aqueous media
    Brozova, Libuse
    Holler, Petr
    Kovarova, Jana
    Stejskal, Jaroslav
    Trchova, Miroslava
    [J]. POLYMER DEGRADATION AND STABILITY, 2008, 93 (03) : 592 - 600
  • [4] Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: Structure and properties
    Cai, Jie
    Zhang, Lina
    Zhou, Jinping
    Qi, Haisong
    Chen, Hui
    Kondo, Tetsuo
    Chen, Xuming
    Chu, Benjamin
    [J]. ADVANCED MATERIALS, 2007, 19 (06) : 821 - +
  • [5] SPECTROSCOPIC STUDIES OF POLYANILINE IN SOLUTION AND IN SPIN-CAST FILMS
    CAO, Y
    SMITH, P
    HEEGER, AJ
    [J]. SYNTHETIC METALS, 1989, 32 (03) : 263 - 281
  • [6] Super solvent of cellulose with extra high solubility for tunable cellulose structure with versatile application
    Chen, Genqiang
    Hong, Feng F.
    Yuan, Jinying
    Li, Luoxin
    Fang, Ming
    Wei, Wenjuan
    Wang, Xiaohui
    Wei, Yen
    [J]. CARBOHYDRATE POLYMERS, 2022, 296
  • [7] Electronic Textiles for Wearable Point-of-Care Systems
    Chen, Guorui
    Xiao, Xiao
    Zhao, Xun
    Tat, Trinny
    Bick, Michael
    Chen, Jun
    [J]. CHEMICAL REVIEWS, 2022, 122 (03) : 3259 - 3291
  • [8] Cruz-Estrada R., 2000, FRC 2000 COMPOSITES, P238
  • [9] One-pot synthesis of zinc oxide - polyaniline nanocomposite for fabrication of efficient room temperature ammonia gas sensor
    Das, Mausumi
    Sarkar, D.
    [J]. CERAMICS INTERNATIONAL, 2017, 43 (14) : 11123 - 11131
  • [10] Fabrication of thermoplastic polyurethane and polyaniline conductive blend with improved mechanical, thermal and excellent dielectric properties: exploring the effect of ultralow-level loading of SWCNT and temperature
    Dash, Kalyani
    Hota, Nanda Kumar
    Sahoo, Bibhu Prasad
    [J]. JOURNAL OF MATERIALS SCIENCE, 2020, 55 (26) : 12568 - 12591