A Machine Learning Method for Automated Description and Workflow Analysis of First Trimester Ultrasound Scans

被引:9
|
作者
Yasrab, Robail [1 ]
Fu, Zeyu [1 ]
Zhao, He [1 ]
Lee, Lok Hin [1 ]
Sharma, Harshita [1 ]
Drukker, Lior [2 ,3 ]
Papageorgiou, Aris T. [1 ,2 ]
Noble, J. Alison
机构
[1] Univ Oxford, Inst Biomed Engn, Oxford OX3 7DQ, England
[2] Univ Oxford, Dept Womens & Reprod Hlth, Oxford OX3 7DQ, England
[3] Tel Aviv Univ, Sackler Fac Med, Rabin Med Ctr, IL-6997801 Tel Aviv, Israel
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Ultrasonic imaging; Streaming media; Standards; Annotations; Task analysis; Pregnancy; Ultrasonic variables measurement; First trimester; ultrasound; spatio-temporal analysis; video classification; clinical workflow; FETAL STRUCTURAL ANOMALIES; IMAGE SEGMENTATION;
D O I
10.1109/TMI.2022.3226274
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Obstetric ultrasound assessment of fetal anatomy in the first trimester of pregnancy is one of the less explored fields in obstetric sonography because of the paucity of guidelines on anatomical screening and availability of data. This paper, for the first time, examines imaging proficiency and practices of first trimester ultrasound scanning through analysis of full-length ultrasound video scans. Findings from this study provide insights to inform the development of more effective user-machine interfaces, of targeted assistive technologies, as well as improvements in workflow protocols for first trimester scanning. Specifically, this paper presents an automated framework to model operator clinical workflow from full-length routine first-trimester fetal ultrasound scan videos. The 2D+t convolutional neural network-based architecture proposed for video annotation incorporates transfer learning and spatio-temporal (2D+t) modelling to automatically partition an ultrasound video into semantically meaningful temporal segments based on the fetal anatomy detected in the video. The model results in a cross-validation A1 accuracy of 96.10% , F1=0.95 , precision =0.94 and recall =0.95 . Automated semantic partitioning of unlabelled video scans (n=250) achieves a high correlation with expert annotations ( ? = 0.95, p=0.06 ). Clinical workflow patterns, operator skill and its variability can be derived from the resulting representation using the detected anatomy labels, order, and distribution. It is shown that nuchal translucency (NT) is the toughest standard plane to acquire and most operators struggle to localize high-quality frames. Furthermore, it is found that newly qualified operators spend 25.56% more time on key biometry tasks than experienced operators.
引用
收藏
页码:1301 / 1313
页数:13
相关论文
共 50 条
  • [31] Automated machine learning-based radiomics analysis versus deep learning-based classification for thyroid nodule on ultrasound images: a multi-center study
    Liu, Zelong
    Deyer, Louisa
    Yang, Arnold
    Liu, Steven
    Gong, Jingqi
    Yang, Yang
    Huang, Mingqian
    Doshi, Amish
    Lu, Meng
    Lee, Denise
    Deyer, Timothy
    Mei, Xueyan
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2022), 2022, : 23 - 28
  • [32] Assessment of Maternal Serum Biochemical Attributes and Fetal Ultrasound Scans in First-Trimester Low-Risk Noninvasive Prenatal-Tested Pregnant Women
    Keshari, J. R.
    Kumar, Uday
    Kumar, Prabhat
    Prasad, Dipali
    Prakash, Pritam
    Pushpanjali, P.
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2022, 14 (05)
  • [33] Automated Lung Ultrasound Pulmonary Disease Quantification Using an Unsupervised Machine Learning Technique for COVID-19
    Sagreiya, Hersh
    Jacobs, Michael A.
    Akhbardeh, Alireza
    DIAGNOSTICS, 2023, 13 (16)
  • [34] Machine-learning-based prediction of pre-eclampsia using first-trimester maternal characteristics and biomarkers
    Ansbacher-Feldman, Z.
    Syngelaki, A.
    Meiri, H.
    Cirkin, R.
    Nicolaides, K. H.
    Louzoun, Y.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2022, 60 (06) : 739 - 745
  • [35] PMT Waveform Timing Analysis Using Machine Learning Method
    Wu, Qi
    Ma, Lishuang
    Peng, Shuo
    Qian, Sen
    Wang, Zhigang
    Chen, Lingyue
    Song, Ruiqiang
    Zhu, Yao
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2023, 70 (06) : 1178 - 1182
  • [36] Image Analysis Using Machine Learning: Anatomical landmarks detection in fetal ultrasound images
    Rahmatullah, Bahbibi
    Papageorghiou, Aris T.
    Noble, J. Alison
    2012 IEEE 36TH ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), 2012, : 354 - +
  • [37] A Machine Learning Method for Automated In Vivo Transparent Vessel Segmentation and Identification Based on Blood Flow Characteristics
    Sun, Mingzhu
    Wang, Yiwen
    Fu, Zhenhua
    Li, Lu
    Liu, Yaowei
    Zhao, Xin
    MICROSCOPY AND MICROANALYSIS, 2022, 28 (03) : 801 - 814
  • [38] Machine Learning Analysis of Human Skin by Optoacoustic Mesoscopy for Automated Extraction of Psoriasis and Aging Biomarkers
    He, Hailong
    Paetzold, Johannes C.
    Boerner, Nils
    Riedel, Erik
    Gerl, Stefan
    Schneider, Simon
    Fisher, Chiara
    Ezhov, Ivan
    Shit, Suprosanna
    Li, Hongwei
    Ruckert, Daniel
    Aguirre, Juan
    Biedermann, Tilo
    Darsow, Ulf
    Menze, Bjoern
    Ntziachristos, Vasilis
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (06) : 2074 - 2085
  • [39] Validation of machine-learning model for first-trimester prediction of pre-eclampsia using cohort from PREVAL study
    Gil, M. M.
    Cuenca-Gomez, D.
    Rolle, V.
    Pertegal, M.
    Diaz, C.
    Revello, R.
    Adiego, B.
    Mendoza, M.
    Molina, F. S.
    Santacruz, B.
    Ansbacher-Feldman, Z.
    Meiri, H.
    Martin-Alonso, R.
    Louzoun, Y.
    Matallana, C. De Paco
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2024, 63 (01) : 68 - 74
  • [40] An Automated Method for Classifying Liver Lesions in Contrast-Enhanced Ultrasound Imaging Based on Deep Learning Algorithms
    Mamuleanu, Madalin
    Urhut, Cristiana Marinela
    Sandulescu, Larisa Daniela
    Kamal, Constantin
    Ana-Maria, Patrascu
    Ionescu, Alin Gabriel
    Mircea-Sebastian, Serbanesu
    Streba, Costin Teodor
    DIAGNOSTICS, 2023, 13 (06)