Nonradiative Recombination Dominates Voltage Losses in Cu(In,Ga)Se2 Solar Cells Fabricated using Different Methods

被引:4
作者
Bothwell, Alexandra M. [1 ]
Wands, Jake [2 ]
Miller, Michael F. [3 ]
Kanevce, Ana [4 ]
Paetel, Stefan [4 ]
Tsoulka, Polyxeni [5 ]
Lepetit, Thomas [5 ]
Barreau, Nicolas [5 ]
Valdes, Nicholas [6 ]
Shafarman, William [6 ]
Rockett, Angus [2 ]
Arehart, Aaron R. [3 ]
Kuciauskas, Darius [1 ]
机构
[1] Natl Renewable Energy Lab, Mat Chem & Computat Sci, Golden, CO 80401 USA
[2] Colorado Sch Mines, Met & Mat Engn, Golden, CO 80401 USA
[3] Ohio State Univ, Columbus, OH 43210 USA
[4] Zentrum Sonnenenergie & Wasserstoff Forsch, D-70563 Stuttgart, Germany
[5] Nantes Univ, Inst Mat Nantes Jean Rouxel, CNRS, IMN, F-44000 Nantes, France
[6] Univ Delaware, Inst Energy Convers, Newark, DE 19716 USA
关键词
Cu(In; Ga)Se-2; nonradiative recombination; solar cells; voltage losses; POSTDEPOSITION TREATMENT; THIN-FILMS; EFFICIENCY; CONVERSION; LIMIT;
D O I
10.1002/solr.202300075
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Voltage losses reduce the photovoltaic conversion efficiency of thin-film solar cells and are a primary efficiency limitation in Cu(In,Ga)Se-2. Herein, voltage loss analysis of Cu(In,Ga)Se-2 solar cells fabricated at three institutions with variation in process, bandgap, absorber structure, postdeposition treatment (PDT), and efficiency is presented. Nonradiative voltage losses due to Shockley-Read-Hall charge carrier recombination dominate and constitute >75% of the total compared to <25% from radiative voltage losses. The radiative voltage loss results from nonideal absorption and carriers in band tails that stem from local composition-driven potential fluctuations. It is shown that significant bulk lifetime improvements are achieved for all alkali PDT processed absorbers, chiefly associated with reductions in nonradiative recombination. Primary voltage loss contributions (radiative and nonradiative) change little across fabrication processes, but variation in submechanisms (bulk lifetime, net acceptor concentration, and interface recombination) differentiate nonradiative loss pathways in this series of solar cells.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Quantitative imaging of electronic nonuniformities in Cu(In, Ga)Se2 solar cells
    Brown, Gregory
    Pudov, Alex
    Cardozo, Ben
    Faifer, Vladimir
    Bykov, Eugene
    Contreras, Miguel
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 108 (07)
  • [42] Flexible Cu(In,Ga)Se2 solar cells with reduced absorber thickness
    Reinhard, Patrick
    Pianezzi, Fabian
    Kranz, Lukas
    Nishiwaki, Shiro
    Chirila, Adrian
    Buecheler, Stephan
    Tiwari, Ayodhya N.
    [J]. PROGRESS IN PHOTOVOLTAICS, 2015, 23 (03): : 281 - 289
  • [43] Flexible and lightweight perovskite/Cu(In,Ga)Se2 tandem solar cells
    Jeong, Inyoung
    Lee, Tae Kyung
    Van Tran, Hung
    Hwang, Inchan
    Hwang, Jiseon
    Lee, Ahreum
    Ham, Seungsik
    Tran, Huyen
    Cho, Yunae
    Shin, Donghyeop
    Song, Soomin
    Lee, Sangmin
    Ahn, Seung Kyu
    Eo, Young-Joo
    Cho, Ara
    Park, Joo Hyung
    Cho, Jun-Sik
    Byeon, Junseop
    Kim, Won Mok
    Yun, Jae Ho
    Gwak, Jihye
    Hong, Sungjun
    Ahn, Sejin
    Kim, Hae-Jin
    Kim, Kihwan
    [J]. JOULE, 2025, 9 (03)
  • [44] Rear Contact Passivation for High Bandgap Cu(In,Ga)Se2 Solar Cells With a Flat Ga profile
    Ledinek, Dorothea
    Salome, Pedro
    Hagglund, Carl
    Zimmermann, Uwe
    Edoff, Marika
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2018, 8 (03): : 864 - 870
  • [45] Comparison of structural and electrical properties of Cu(In, Ga)Se2 for substrate and superstrate solar cells
    Haug, FJ
    Rudmann, D
    Bilger, G
    Zogg, H
    Tiwari, AN
    [J]. THIN SOLID FILMS, 2002, 403 : 293 - 296
  • [46] Estimation of open-circuit voltage of Cu(In,Ga)Se2 solar cells before cell fabrication
    Chantana, Jakapan
    Hironiwa, Daisuke
    Watanabe, Taichi
    Teraji, Seiki
    Kawamura, Kazunori
    Minemoto, Takashi
    [J]. RENEWABLE ENERGY, 2015, 76 : 575 - 581
  • [47] Flexible Cu(In,Ga)Se2 solar cells fabricated using a polyimide-coated soda-lime glass substrate
    Sadono, Adiyudha
    Hino, Masashi
    Ichikawa, Mitsuru
    Yamamoto, Kenji
    Kurokawa, Yasuyoshi
    Konagai, Makoto
    Yamada, Akira
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (08)
  • [48] Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%
    Jackson, Philip
    Hariskos, Dimitrios
    Wuerz, Roland
    Kiowski, Oliver
    Bauer, Andreas
    Friedlmeier, Theresa Magorian
    Powalla, Michael
    [J]. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2015, 9 (01): : 28 - 31
  • [49] Diffusion of Rb in polycrystalline Cu(In, Ga)Se2 layers and effect of Rb on solar cell parameters of Cu(In, Ga)Se2 thin-film solar cells
    Wuerz, R.
    Hempel, W.
    Jackson, P.
    [J]. JOURNAL OF APPLIED PHYSICS, 2018, 124 (16)
  • [50] Tuning Ga Grading in Selenized Cu(In,Ga)Se2 Solar Cells by Formation of Ordered Vacancy Compound
    Tu, Lung-Hsin
    Cai, Chung-Hao
    Lai, Chih-Huang
    [J]. SOLAR RRL, 2021, 5 (03):