Nonradiative Recombination Dominates Voltage Losses in Cu(In,Ga)Se2 Solar Cells Fabricated using Different Methods

被引:4
作者
Bothwell, Alexandra M. [1 ]
Wands, Jake [2 ]
Miller, Michael F. [3 ]
Kanevce, Ana [4 ]
Paetel, Stefan [4 ]
Tsoulka, Polyxeni [5 ]
Lepetit, Thomas [5 ]
Barreau, Nicolas [5 ]
Valdes, Nicholas [6 ]
Shafarman, William [6 ]
Rockett, Angus [2 ]
Arehart, Aaron R. [3 ]
Kuciauskas, Darius [1 ]
机构
[1] Natl Renewable Energy Lab, Mat Chem & Computat Sci, Golden, CO 80401 USA
[2] Colorado Sch Mines, Met & Mat Engn, Golden, CO 80401 USA
[3] Ohio State Univ, Columbus, OH 43210 USA
[4] Zentrum Sonnenenergie & Wasserstoff Forsch, D-70563 Stuttgart, Germany
[5] Nantes Univ, Inst Mat Nantes Jean Rouxel, CNRS, IMN, F-44000 Nantes, France
[6] Univ Delaware, Inst Energy Convers, Newark, DE 19716 USA
关键词
Cu(In; Ga)Se-2; nonradiative recombination; solar cells; voltage losses; POSTDEPOSITION TREATMENT; THIN-FILMS; EFFICIENCY; CONVERSION; LIMIT;
D O I
10.1002/solr.202300075
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Voltage losses reduce the photovoltaic conversion efficiency of thin-film solar cells and are a primary efficiency limitation in Cu(In,Ga)Se-2. Herein, voltage loss analysis of Cu(In,Ga)Se-2 solar cells fabricated at three institutions with variation in process, bandgap, absorber structure, postdeposition treatment (PDT), and efficiency is presented. Nonradiative voltage losses due to Shockley-Read-Hall charge carrier recombination dominate and constitute >75% of the total compared to <25% from radiative voltage losses. The radiative voltage loss results from nonideal absorption and carriers in band tails that stem from local composition-driven potential fluctuations. It is shown that significant bulk lifetime improvements are achieved for all alkali PDT processed absorbers, chiefly associated with reductions in nonradiative recombination. Primary voltage loss contributions (radiative and nonradiative) change little across fabrication processes, but variation in submechanisms (bulk lifetime, net acceptor concentration, and interface recombination) differentiate nonradiative loss pathways in this series of solar cells.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Refractive indices of layers and optical simulations of Cu(In,Ga)Se2 solar cells
    Carron, Romain
    Avancini, Enrico
    Feurer, Thomas
    Bissig, Benjamin
    Losio, Paolo A.
    Figi, Renato
    Schreiner, Claudia
    Burki, Melanie
    Bourgeois, Emilie
    Remes, Zdenek
    Nesladek, Milos
    Buecheler, Stephan
    Tiwari, Ayodhya N.
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2018, 19 (01) : 396 - 410
  • [32] ZnO/InxSy/Cu(In,Ga)Se2 solar cells fabricated by coherent heterojunction formation
    Strohm, A
    Eisenmann, L
    Gebhardt, RK
    Harding, A
    Schlötzer, T
    Abou-Ras, D
    Schock, HW
    THIN SOLID FILMS, 2005, 480 : 162 - 167
  • [33] Control of valence band offset at CdS/Cu(In,Ga)Se2 interface by inserting wide-bandgap materials for suppression of interfacial recombination in Cu(In,Ga)Se2 solar cells
    Nishimura, Takahito
    Hirai, Yoshiaki
    Kurokawa, Yasuyoshi
    Yamada, Akira
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (08)
  • [34] Cu(In,Ga)Se2 solar cells and mini-modules fabricated on thin soda-lime glass substrates
    Furue, Shigenori
    Ishizuka, Shogo
    Yamada, Akimasa
    Iioka, Masayuki
    Higuchi, Hirofumi
    Shibata, Hajime
    Niki, Shigeru
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 119 : 163 - 168
  • [35] Effect of Cu-In-Ga Target Composition on Hybrid-Sputtered Cu(In,Ga)Se2 Solar Cells
    Santos, Pedro
    Brito, Daniel
    Anacleto, Pedro
    Fonseca, Jose
    de Brito Sousa, Diana
    Tavares, Carlos J.
    Virtuoso, Jose
    Alves, Marina
    Perez-Rodriguez, Ana
    Sadewasser, Sascha
    IEEE JOURNAL OF PHOTOVOLTAICS, 2021, 11 (05): : 1206 - 1212
  • [36] Ultrathin Cu(In,Ga)Se2 based solar cells
    Naghavi, N.
    Mollica, F.
    Goffard, J.
    Posada, J.
    Duchatelet, A.
    Jubault, M.
    Donsanti, F.
    Cattoni, A.
    Collin, S.
    Grand, P. P.
    Greffet, J. J.
    Lincot, D.
    THIN SOLID FILMS, 2017, 633 : 55 - 60
  • [37] 13.6%-efficient Cu(In,Ga)Se2 solar cell with absorber fabricated by RF sputtering of (In,Ga)2Se3 and Cu Se targets
    Zhu, X. L.
    Wang, Y. M.
    Zhou, Z.
    Li, A. M.
    Zhang, L.
    Huang, F. Q.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 113 : 140 - 143
  • [38] Time constants of open circuit voltage relaxation in Cu(In,Ga)Se2 solar cells
    Rau, U.
    Turcu, M.
    Jasenek, A.
    THIN SOLID FILMS, 2007, 515 (15) : 6243 - 6245
  • [39] Rubidium Fluoride Absorber Treatment for Wide-Gap (Ag,Cu)(In,Ga)Se2 Solar Cells
    Keller, Jan
    Aboulfadl, Hisham
    Stolt, Lars
    Donzel-Gargand, Olivier
    Edoff, Marika
    SOLAR RRL, 2022, 6 (06):
  • [40] Investigation of the effect of potassium on Cu(In, Ga)Se2 layers and solar cells
    Laemmle, A.
    Wuerz, R.
    Powalla, M.
    THIN SOLID FILMS, 2015, 582 : 27 - 30