Nonradiative Recombination Dominates Voltage Losses in Cu(In,Ga)Se2 Solar Cells Fabricated using Different Methods

被引:4
作者
Bothwell, Alexandra M. [1 ]
Wands, Jake [2 ]
Miller, Michael F. [3 ]
Kanevce, Ana [4 ]
Paetel, Stefan [4 ]
Tsoulka, Polyxeni [5 ]
Lepetit, Thomas [5 ]
Barreau, Nicolas [5 ]
Valdes, Nicholas [6 ]
Shafarman, William [6 ]
Rockett, Angus [2 ]
Arehart, Aaron R. [3 ]
Kuciauskas, Darius [1 ]
机构
[1] Natl Renewable Energy Lab, Mat Chem & Computat Sci, Golden, CO 80401 USA
[2] Colorado Sch Mines, Met & Mat Engn, Golden, CO 80401 USA
[3] Ohio State Univ, Columbus, OH 43210 USA
[4] Zentrum Sonnenenergie & Wasserstoff Forsch, D-70563 Stuttgart, Germany
[5] Nantes Univ, Inst Mat Nantes Jean Rouxel, CNRS, IMN, F-44000 Nantes, France
[6] Univ Delaware, Inst Energy Convers, Newark, DE 19716 USA
关键词
Cu(In; Ga)Se-2; nonradiative recombination; solar cells; voltage losses; POSTDEPOSITION TREATMENT; THIN-FILMS; EFFICIENCY; CONVERSION; LIMIT;
D O I
10.1002/solr.202300075
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Voltage losses reduce the photovoltaic conversion efficiency of thin-film solar cells and are a primary efficiency limitation in Cu(In,Ga)Se-2. Herein, voltage loss analysis of Cu(In,Ga)Se-2 solar cells fabricated at three institutions with variation in process, bandgap, absorber structure, postdeposition treatment (PDT), and efficiency is presented. Nonradiative voltage losses due to Shockley-Read-Hall charge carrier recombination dominate and constitute >75% of the total compared to <25% from radiative voltage losses. The radiative voltage loss results from nonideal absorption and carriers in band tails that stem from local composition-driven potential fluctuations. It is shown that significant bulk lifetime improvements are achieved for all alkali PDT processed absorbers, chiefly associated with reductions in nonradiative recombination. Primary voltage loss contributions (radiative and nonradiative) change little across fabrication processes, but variation in submechanisms (bulk lifetime, net acceptor concentration, and interface recombination) differentiate nonradiative loss pathways in this series of solar cells.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Front passivation of Cu(In,Ga)Se2 solar cells using Al2O3: Culprits and benefits
    Curado, M. A.
    Teixeira, J. P.
    Monteiro, M.
    Ribeiro, E. F. M.
    Vilao, R. C.
    Alberto, H. V.
    Cunha, J. M. V.
    Lopes, T. S.
    Oliveira, K.
    Donzel-Gargand, O.
    Hultqvist, A.
    Calderon, S.
    Barreiros, M. A.
    Chiappim, W.
    Leitao, J. P.
    Silva, A. G.
    Prokscha, T.
    Vinhais, C.
    Fernandes, P. A.
    Salome, P. M. P.
    APPLIED MATERIALS TODAY, 2020, 21
  • [22] Compensating donors in Cu(In,Ga)Se2 absorbers of solar cells
    Igalson, M
    Edoff, M
    THIN SOLID FILMS, 2005, 480 : 322 - 326
  • [23] Enhanced Photoresponse of Cu(In,Ga)Se2/CdS Heterojunction Fabricated Using Economical Non-Vacuum Methods
    Mandati, Sreekanth
    Sarada, Bulusu V.
    Dey, Suhash R.
    Joshi, Shrikant V.
    ELECTRONIC MATERIALS LETTERS, 2015, 11 (04) : 618 - 624
  • [24] Stability of Cu(In,Ga)Se2 solar cells:: a thermodynamic approach
    Guillemoles, JF
    THIN SOLID FILMS, 2000, 361 : 338 - 345
  • [25] The puzzle of Cu(In,Ga)Se2 (CIGS) solar cells stability
    Guillemoles, JF
    THIN SOLID FILMS, 2002, 403 : 405 - 409
  • [26] Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells
    Romeo, A
    Terheggen, A
    Abou-Ras, D
    Bätzner, DL
    Haug, FJ
    Kälin, M
    Rudmann, D
    Tiwari, AN
    PROGRESS IN PHOTOVOLTAICS, 2004, 12 (2-3): : 93 - 111
  • [27] Degradation mechanism of Cu(In,Ga)Se2 solar cells induced by exposure to air
    Nishinaga, Jiro
    Kamikawa, Yukiko
    Koida, Takashi
    Shibata, Hajime
    Niki, Shigeru
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (07)
  • [28] Cu(In,Ga)Se2 thin films processed by co-evaporation and their application into solar cells
    Sastre-Hernandez, J.
    Calixto, M. E.
    Tufino-Velazquez, M.
    Contreras-Puente, G.
    Morales-Acevedo, A.
    Casados-Cruz, G.
    Hernandez-Perez, M. A.
    Albor-Aguilera, M. L.
    Mendoza-Perez, R.
    REVISTA MEXICANA DE FISICA, 2011, 57 (05) : 441 - 445
  • [29] Urbach energy of Cu(In,Ga)Se2 and Cu(In,Ga)(S,Se)2 absorbers prepared by various methods: Indicator of their quality
    Chantana, Jakapan
    Kawano, Yu
    Nishimura, Takahito
    Minemoto, Takashi
    MATERIALS TODAY COMMUNICATIONS, 2019, 21
  • [30] ZnO/InxSy/Cu(In,Ga)Se2 solar cells fabricated by coherent heterojunction formation
    Strohm, A
    Eisenmann, L
    Gebhardt, RK
    Harding, A
    Schlötzer, T
    Abou-Ras, D
    Schock, HW
    THIN SOLID FILMS, 2005, 480 : 162 - 167