Highly conductive and anti-freezing cellulose hydrogel for flexible sensors

被引:64
|
作者
Shu, Lian [1 ]
Wang, Zhongguo [1 ]
Zhang, Xiong-Fei [1 ]
Yao, Jianfeng [1 ]
机构
[1] Nanjing Forestry Univ, Coll Chem Engn, Jiangsu Coinnovat Ctr Efficient Proc & Utilizat Fo, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Cellulose; Hydrogels; Conductive; Anti-freezing; NANOCOMPOSITE HYDROGEL; MECHANICAL STRENGTH; TOUGHNESS; STRATEGY;
D O I
10.1016/j.ijbiomac.2023.123425
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ionic conducting hydrogels (ICHs) are emerging materials for multi-functional sensors in the fields of healthcare monitoring and flexible electronics. However, there is a long-standing dilemma between ionic conductivity and mechanical properties of the ICHs. In this work, ionic conductive, flexible, transparent, and anti-freezing hydrogels are fabricated by dissolving cotton linter pulp in ZnCl2/CaCl2 solution and cross-linking with epichlorohydrin (ECH). The presence of inorganic salt imparts the hydrogel with high ionic conductivity and low-temperature tolerance. While the introduction of ECH as the second network gives the hydrogel with desirable mechanical performance. By tailoring the ECH addition, the tensile strength, compressive strength, elongation at break, and conductivity of the hydrogel could reach 0.82 MPa, 2.80 MPa, 260 %, and 5.48 S m-1, respectively. The prepared ICHs are fabricated into sensors for detecting full-range human body motions, and they demonstrate fast response and durable sensitivity to both tensile strain and compressive deformation. Moreover, flexible sensors can work at subzero temperatures. This work provides a new idea for the preparation of cellulose-based hydrogels with good ionic conductivity and mechanical properties under extreme conditions.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Ionic conductive amylopectin hydrogels for biocompatible and anti-freezing wearable sensors
    Dai, Rujun
    Gao, Yiyan
    Sun, Yibo
    Shi, Kai
    Gao, Guanghui
    Zhang, Huixuan
    EUROPEAN POLYMER JOURNAL, 2023, 200
  • [22] HIGHLY DEFORMABLE AND TRANSPARENT TRIBOELECTRIC PHYSIOLOGICAL SENSOR BASED ON ANTI-FREEZING AND ANTI-DRYING IONIC CONDUCTIVE HYDROGEL
    Chen, Zhensheng
    Yu, Jiahao
    Xu, Mengfei
    Zeng, Haozhe
    Tao, Kai
    Wu, Zixuan
    Wu, Jin
    Miao, Jianmin
    Chang, Honglong
    Yuan, Weizheng
    2021 34TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2021), 2021, : 525 - 528
  • [23] Stretchable, self-healable and anti-freezing conductive hydrogel based on double network for strain sensors and arrays
    Xiao Sun
    Wenzhao Zhong
    Zhanzhan Zhang
    Haiyang Liao
    Changfan Zhang
    Journal of Materials Science, 2022, 57 : 12511 - 12521
  • [24] Anti-freezing conductive zwitterionic composite hydrogels for stable multifunctional sensors
    Zhang, Zeyu
    Raffa, Patrizio
    EUROPEAN POLYMER JOURNAL, 2023, 199
  • [25] Anti-freezing, moisturizing, resilient and conductive organohydrogel for sensitive pressure sensors
    Zheng, Wenhui
    Xu, Lijuan
    Li, Yangyang
    Huang, Yudong
    Li, Bing
    Jiang, Zaixing
    Gao, Guolin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 594 : 584 - 592
  • [26] Stretchable, self-healable and anti-freezing conductive hydrogel based on double network for strain sensors and arrays
    Sun, Xiao
    Zhong, Wenzhao
    Zhang, Zhanzhan
    Liao, Haiyang
    Zhang, Changfan
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (26) : 12511 - 12521
  • [27] A highly sensitive and anti-freezing conductive strain sensor based on polypyrrole/cellulose nanofiber crosslinked polyvinyl alcohol hydrogel for human motion detection
    Liu, Xiaolan
    Shi, Hongyang
    Song, Feifei
    Yang, Weihong
    Yang, Bowen
    Ding, Dayong
    Liu, Zhong
    Hui, Lanfeng
    Zhang, Fengshan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 257
  • [28] Research progress on moisturizing and anti-freezing conductive hydrogels in flexible electronics
    Wang, Yafang
    Yao, Anrong
    Chen, Fangchun
    Lan, Jianwu
    Lin, Shaojian
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2024, 41 (12): : 6356 - 6369
  • [29] Dual Conductive Network Hydrogel for a Highly Conductive, Self-Healing, Anti-Freezing, and Non-Drying Strain Sensor
    Han, Songjia
    Liu, Chunrui
    Lin, Xiaoyun
    Zheng, Jiwen
    Wu, Jin
    Liu, Chuan
    ACS APPLIED POLYMER MATERIALS, 2020, 2 (02) : 996 - 1005
  • [30] Wide-humidity, anti-freezing and stretchable multifunctional conductive carboxymethyl cellulose-based hydrogels for flexible wearable strain sensors and arrays
    Cui, Liangliang
    Wang, Wei
    Zheng, Jian
    Hu, Chunyan
    Zhu, Zhijia
    Liu, Baojiang
    CARBOHYDRATE POLYMERS, 2024, 342