Highly conductive and anti-freezing cellulose hydrogel for flexible sensors

被引:64
|
作者
Shu, Lian [1 ]
Wang, Zhongguo [1 ]
Zhang, Xiong-Fei [1 ]
Yao, Jianfeng [1 ]
机构
[1] Nanjing Forestry Univ, Coll Chem Engn, Jiangsu Coinnovat Ctr Efficient Proc & Utilizat Fo, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Cellulose; Hydrogels; Conductive; Anti-freezing; NANOCOMPOSITE HYDROGEL; MECHANICAL STRENGTH; TOUGHNESS; STRATEGY;
D O I
10.1016/j.ijbiomac.2023.123425
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ionic conducting hydrogels (ICHs) are emerging materials for multi-functional sensors in the fields of healthcare monitoring and flexible electronics. However, there is a long-standing dilemma between ionic conductivity and mechanical properties of the ICHs. In this work, ionic conductive, flexible, transparent, and anti-freezing hydrogels are fabricated by dissolving cotton linter pulp in ZnCl2/CaCl2 solution and cross-linking with epichlorohydrin (ECH). The presence of inorganic salt imparts the hydrogel with high ionic conductivity and low-temperature tolerance. While the introduction of ECH as the second network gives the hydrogel with desirable mechanical performance. By tailoring the ECH addition, the tensile strength, compressive strength, elongation at break, and conductivity of the hydrogel could reach 0.82 MPa, 2.80 MPa, 260 %, and 5.48 S m-1, respectively. The prepared ICHs are fabricated into sensors for detecting full-range human body motions, and they demonstrate fast response and durable sensitivity to both tensile strain and compressive deformation. Moreover, flexible sensors can work at subzero temperatures. This work provides a new idea for the preparation of cellulose-based hydrogels with good ionic conductivity and mechanical properties under extreme conditions.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Ultra-adherable dual-network conductive hydrogel with moistening and anti-freezing as a flexible sensor
    Li, Wen
    Wang, Fang
    Zhu, Dingfeng
    Wang, Jiajun
    Liu, Jiaqi
    POLYMER, 2024, 308
  • [12] Ultrastretchable, Adhesive, Anti-freezing, Conductive, and Self-Healing Hydrogel for Wearable Devices
    Zhao, Xiaoli
    Wang, Huanxia
    Luo, Jinni
    Ren, Guanglei
    Wang, Jinfei
    Chen, Yuan
    Jia, Pengxiang
    ACS APPLIED POLYMER MATERIALS, 2022, 4 (03): : 1784 - 1793
  • [13] Stretchable, self-healable and anti-freezing conductive hydrogel based on double network for strain sensors and arrays
    Sun, Xiao
    Zhong, Wenzhao
    Zhang, Zhanzhan
    Liao, Haiyang
    Zhang, Changfan
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (26) : 12511 - 12521
  • [14] Research progress on moisturizing and anti-freezing conductive hydrogels in flexible electronics
    Wang, Yafang
    Yao, Anrong
    Chen, Fangchun
    Lan, Jianwu
    Lin, Shaojian
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2024, 41 (12): : 6356 - 6369
  • [15] Soft, Conductive, and Anti-Freezing Conducting Polymer Organohydrogels
    Zhou, Xin
    Kateb, Pierre
    Miquet-Westphal, Floriane
    Lodygensky, Gregory A.
    Cicoira, Fabio
    ADVANCED SENSOR RESEARCH, 2023, 2 (12):
  • [16] A highly stretchable, self-adhesive, anti-freezing dual-network conductive carboxymethyl chitosan based hydrogel for flexible wearable strain sensor
    Wang, Shuai
    Li, Jinyang
    Zhang, Li
    Ren, Fazhan
    Zhang, Jiale
    Ren, Lili
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 308
  • [17] Anti-freezing, water-retaining, conductive, and strain-sensitive hemicellulose/polypyrrole composite hydrogels for flexible sensors
    Zhang, Wei
    Wen, Jing-Yun
    Ma, Ming-Guo
    Li, Ming-Fei
    Peng, Feng
    Bian, Jing
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 14 : 555 - 566
  • [18] Polyethylene Glycol-Based Conductive Hydrogels with Anti-Freezing, Water Retention and Self-Adhesion for Flexible Sensors
    Zhong, Yangengchen
    Liu, Mingjie
    Xiang, Chuyang
    Lin, Yeying
    Guan, Youjun
    Ren, Kunyu
    Ning, Chengyun
    Zhou, Lei
    Lu, Limin
    Fu, Rumin
    Tan, Guoxin
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (19): : 11828 - 11839
  • [19] Ultra-stretchable and anti-freezing conductive organohydrogel reinforced with ionic clusters for wearable strain sensors
    Guo, Chuanluan
    Zhu, Aoqi
    Wang, Xiaohong
    Dai, Juguo
    Luo, Lili
    Xu, Yiting
    Zeng, Birong
    Chen, Guorong
    Dai, Lizong
    SENSORS AND ACTUATORS B-CHEMICAL, 2022, 362
  • [20] Rapid photo-crosslinking, highly conductive, and anti-freezing acrylamide-based hydrogels applied for ECG sensors
    Lian, Zixuan
    Ding, Yuefei
    Chen, Yixiang
    Yu, Dan
    Wang, Wei
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 703