Highly conductive and anti-freezing cellulose hydrogel for flexible sensors

被引:64
|
作者
Shu, Lian [1 ]
Wang, Zhongguo [1 ]
Zhang, Xiong-Fei [1 ]
Yao, Jianfeng [1 ]
机构
[1] Nanjing Forestry Univ, Coll Chem Engn, Jiangsu Coinnovat Ctr Efficient Proc & Utilizat Fo, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Cellulose; Hydrogels; Conductive; Anti-freezing; NANOCOMPOSITE HYDROGEL; MECHANICAL STRENGTH; TOUGHNESS; STRATEGY;
D O I
10.1016/j.ijbiomac.2023.123425
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ionic conducting hydrogels (ICHs) are emerging materials for multi-functional sensors in the fields of healthcare monitoring and flexible electronics. However, there is a long-standing dilemma between ionic conductivity and mechanical properties of the ICHs. In this work, ionic conductive, flexible, transparent, and anti-freezing hydrogels are fabricated by dissolving cotton linter pulp in ZnCl2/CaCl2 solution and cross-linking with epichlorohydrin (ECH). The presence of inorganic salt imparts the hydrogel with high ionic conductivity and low-temperature tolerance. While the introduction of ECH as the second network gives the hydrogel with desirable mechanical performance. By tailoring the ECH addition, the tensile strength, compressive strength, elongation at break, and conductivity of the hydrogel could reach 0.82 MPa, 2.80 MPa, 260 %, and 5.48 S m-1, respectively. The prepared ICHs are fabricated into sensors for detecting full-range human body motions, and they demonstrate fast response and durable sensitivity to both tensile strain and compressive deformation. Moreover, flexible sensors can work at subzero temperatures. This work provides a new idea for the preparation of cellulose-based hydrogels with good ionic conductivity and mechanical properties under extreme conditions.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] A high-conductive, anti-freezing, antibacterial and anti-swelling starch-based physical hydrogel for multifunctional flexible wearable sensors
    Lu, Lu
    Huang, Zunxiang
    Li, Xiaonan
    Li, Xueting
    Cui, Bo
    Yuan, Chao
    Guo, Li
    Liu, Pengfei
    Dai, Qilin
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 213 : 791 - 803
  • [12] Stretchable, self-healing, adhesive and anti-freezing ionic conductive cellulose-based hydrogels for flexible supercapacitors and sensors
    Chen, Lizhi
    Yin, Hongyan
    Liu, Fangfei
    Abdiryim, Tursun
    Xu, Feng
    You, Jiangan
    Chen, Jiaying
    Jing, Xinyu
    Li, Yancai
    Su, Mengyao
    Liu, Xiong
    CELLULOSE, 2024, 31 (18) : 11015 - 11033
  • [13] Skin-mimicking strategy to fabricate strong and highly conductive anti-freezing cellulose-based hydrogels as strain sensors
    Xie, Yitong
    Gao, Shishuai
    Jian, Junyu
    Shi, Xiaoyu
    Lai, Chenhuan
    Wang, Chunpeng
    Xu, Feng
    Chu, Fuxiang
    Zhang, Daihui
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 227 : 462 - 471
  • [14] A versatile, highly stretchable, and anti-freezing alginate/polyacrylamide/ polyaniline multi-network hydrogel for flexible strain sensors and supercapacitors
    Yu, Mingjun
    Gao, Yang
    Hong, Hengchang
    Wang, Tao
    Peng, Zhiping
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 288
  • [15] Ultra-adherable dual-network conductive hydrogel with moistening and anti-freezing as a flexible sensor
    Li, Wen
    Wang, Fang
    Zhu, Dingfeng
    Wang, Jiajun
    Liu, Jiaqi
    POLYMER, 2024, 308
  • [16] Anti-freezing Dough for Renewable and Reconfigurable Flexible Strain Sensors
    Haiyang Liao
    Jieling Han
    Yeqi Xiao
    Tiemin Xiao
    Jiayi Su
    Zhanzhan Zhang
    Journal of Electronic Materials, 2024, 53 : 2524 - 2532
  • [17] Ultra-stretchable, anti-freezing conductive hydrogels crosslinked by strong hydrogen bonding for flexible sensors
    Du, Ying
    Sun, Yuanna
    Lu, Shuaishuai
    Zhang, Kaiyuan
    Song, Chen
    Li, Boyang
    He, Xinhai
    Li, Qingshan
    JOURNAL OF POLYMER SCIENCE, 2022, 60 (18) : 2733 - 2740
  • [18] Intrinsically anti-freezing and anti-dehydration hydrogel for multifunctional wearable sensors
    He, Sijing
    Cheng, Qinyi
    Liu, Yunhao
    Rong, Qinfeng
    Liu, Mingjie
    SCIENCE CHINA-MATERIALS, 2022, 65 (07) : 1980 - 1986
  • [19] Antimicrobial and anti-freezing conductive hydrogels driven by quaternary ammonium chitosan salt for flexible strain sensors
    Zhang, Xi
    Kong, Xiangli
    Zhou, Xin
    Gao, Yiyan
    Sun, Yibo
    Gao, Guanghui
    Liu, Wei
    Shi, Kai
    EUROPEAN POLYMER JOURNAL, 2024, 202
  • [20] Anti-freezing Dough for Renewable and Reconfigurable Flexible Strain Sensors
    Liao, Haiyang
    Han, Jieling
    Xiao, Yeqi
    Xiao, Tiemin
    Su, Jiayi
    Zhang, Zhanzhan
    JOURNAL OF ELECTRONIC MATERIALS, 2024, 53 (05) : 2524 - 2532