Opportunities for Recycling PV Glass and Coal Fly Ash into Zeolite Materials Used for Removal of Heavy Metals (Cd, Cu, Pb) from Wastewater

被引:7
作者
Visa, Maria [1 ]
Enesca, Alexandru [1 ]
机构
[1] Transilvania Univ Brasov, Prod Design Mechatron & Environm Dept, Prod Design, Eroilor 29 St, Brasov 35000, Romania
关键词
PV glass; alkaline coal fly ash; hydrothermal method; adsorption; heavy metals; CADMIUM REMOVAL; ORANGE PEEL; BASIC DYE; ADSORPTION; SORPTION; MECHANISM; ADSORBENT; EQUILIBRIUM; SEPARATION; EFFICIENCY;
D O I
10.3390/ma16010239
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work shows the development and characterization of two zeolite structures by recycling PV glass and coal fly ash for the removal of cadmium, copper, and lead from synthetic solutions containing one or three cations. The materials were characterized in terms of crystalline structure (XRD), morphology (SEM, AFM), and specific surface. For increasing the heavy-metals removal efficiency, the adsorption conditions, such as substrate dosage, preliminary concentration, and contact time, were optimized. The pseudo-second-order kinetic model adsorption kinetics fit well to describe the activity of the zeolites ZFAGPV-A and ZFAGPV-S. The zeolite adsorption equilibrium data were expressed using Langmuir and Freundlich models. The highest adsorption capacities of the ZFAGPV-A zeolite are q(maxCd) = 55.56 mg/g, q(maxCu) = 60.11 mg/g, q(maxPb) = 175.44 mg/g, and of ZFAGPV-S, are q(maxCd) = 33.45 mg/g, q(maxCu) = 54.95 mg/g, q(maxPb) = 158.73 mg/g, respectively. This study demonstrated a new opportunity for waste recycling for applications in removing toxic heavy metals from wastewater.
引用
收藏
页数:20
相关论文
共 75 条
[1]   A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study [J].
Abdolali, Atefeh ;
Ngo, Huu Hao ;
Guo, Wenshan ;
Lu, Shaoyong ;
Chen, Shiao-Shing ;
Nguyen Cong Nguyen ;
Zhang, Xinbo ;
Wang, Jie ;
Wu, Yun .
SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 542 :603-611
[2]   Comparison of optimised isotherm models for basic dye adsorption by kudzu [J].
Allen, SJ ;
Gan, Q ;
Matthews, R ;
Johnson, PA .
BIORESOURCE TECHNOLOGY, 2003, 88 (02) :143-152
[3]   INTRAPARTICLE DIFFUSION OF A BASIC DYE DURING ADSORPTION ONTO SPHAGNUM PEAT [J].
ALLEN, SJ ;
MCKAY, G ;
KHADER, KYH .
ENVIRONMENTAL POLLUTION, 1989, 56 (01) :39-50
[4]   Sorption of Cu2+, Cd2+, and Pb2+ using modified zeolite from coal fly ash [J].
Apiratikul, Ronbanchob ;
Pavasant, Prasert .
CHEMICAL ENGINEERING JOURNAL, 2008, 144 (02) :245-258
[5]   Removal of dyes from colored textile wastewater by orange peel adsorbent: Equilibrium and kinetic studies [J].
Arami, M ;
Limaee, NY ;
Mahmoodi, NM ;
Tabrizi, NS .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005, 288 (02) :371-376
[6]   Cadmium removal by a low-cost magadiite-based material: Characterization and sorption applications [J].
Attar, Keltoum ;
Bouazza, Djamila ;
Miloudi, Hafida ;
Tayeb, Abdelkader ;
Boos, Anne ;
Sastre, Ana M. ;
Demey, Hary .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2018, 6 (04) :5351-5360
[8]   Adsorption of metal ions onto Moroccan stevensite: kinetic and isotherm studies [J].
Benhammou, A ;
Yaacoubi, A ;
Nibou, L ;
Tanouti, B .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005, 282 (02) :320-326
[9]   Physical, chemical, and geotechnical properties of coal fly ash: A global review [J].
Bhatt, Arpita ;
Priyadarshini, Sharon ;
Mohanakrishnan, Aiswarya Acharath ;
Abri, Arash ;
Sattler, Melanie ;
Techapaphawit, Sorakrich .
CASE STUDIES IN CONSTRUCTION MATERIALS, 2019, 11
[10]   A critical review of waste resources, synthesis, and applications for Zeolite LTA [J].
Collins, Fiona ;
Rozhkovskaya, Alexandra ;
Outram, John G. ;
Millar, Graeme J. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 291