Object perception in underwater environments: a survey on sensors and sensing methodologies

被引:72
作者
Huy, Dinh Quang [2 ]
Sadjoli, Nicholas [1 ,2 ]
Azam, Abu Bakr [2 ,3 ]
Elhadidi, Basman [4 ]
Cai, Yiyu [2 ,3 ]
Seet, Gerald [2 ]
机构
[1] SAAB, Singapore, Singapore
[2] Nanyang Technol Univ, SAAB NTU Joint Lab, Singapore, Singapore
[3] Nanyang Technol Univ, Energy Res Inst, Singapore, Singapore
[4] Nazarbayev Univ, Sch Engn & Digital Sci, Astana, Kazakhstan
关键词
Underwater robotic; Object perception; Turbid environment; IMAGE-RESOLUTION ENHANCEMENT; AUTOMATIC INTERPRETATION; SUPER RESOLUTION; CFAR PROCESSORS; TARGET TRACKING; SONAR; SEQUENCES; RECONSTRUCTION; FUSION;
D O I
10.1016/j.oceaneng.2022.113202
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Underwater robots play a critical role in the marine industry. Object perception is the foundation for the au-tomatic operations of submerged vehicles in dynamic aquatic environments. However, underwater perception encounters multiple environmental challenges, including rapid light attenuation, light refraction, or back -scattering effect. These problems reduce the sensing devices' signal-to-noise ratio (SNR), making underwater perception a complicated research topic. This paper describes the state-of-the-art sensing technologies and object perception techniques for underwater robots in different environmental conditions. Due to the current sensing modalities' various constraints and characteristics, we divide the perception ranges into close-range, medium-range, and long-range. We survey and describe recent advances for each perception range and suggest some potential future research directions worthy of investigating in this field.
引用
收藏
页数:25
相关论文
共 145 条
[31]  
Denos K, 2017, OCEANS-IEEE
[32]  
Djapic V, 2013, OCEANS-IEEE
[33]   Object Classification in Semi Structured Enviroment Using Forward-Looking Sonar [J].
dos Santos, Matheus ;
Ribeiro, Pedro Otavio ;
Nunez, Pedro ;
Drews-, Paulo, Jr. ;
Botelho, Silvia .
SENSORS, 2017, 17 (10)
[34]   On sequential Monte Carlo sampling methods for Bayesian filtering [J].
Doucet, A ;
Godsill, S ;
Andrieu, C .
STATISTICS AND COMPUTING, 2000, 10 (03) :197-208
[35]   Acoustic Ray-Trace Correction for UUVs Cooperative Localization in Deep Ocean Applications [J].
Du, Zhenqiang ;
Chai, Hongzhou ;
Li, Zeyu ;
Xiang, MinZhi ;
Zhang, Fan ;
Hui, Jun .
MARINE GEODESY, 2022, 45 (06) :595-614
[36]  
Echoscope, 2021, ECHOSCOPE 4G
[37]   Target detection in synthetic aperture radar imagery: a state-of-the-art survey [J].
El-Darymli, Khalid ;
McGuire, Peter ;
Power, Desmond ;
Moloneyb, Cecilia .
JOURNAL OF APPLIED REMOTE SENSING, 2013, 7
[38]  
Fabbri C, 2018, IEEE INT CONF ROBOT, P7159
[39]  
Fang Jie, 2020, 2020 International Conference on Information Science, Parallel and Distributed Systems (ISPDS), P25, DOI 10.1109/ISPDS51347.2020.00013
[40]  
Fuchs L.R., 2018, P 2018 IEEEOES AUTON, P1, DOI 10.1109/AUV.2018.8729686