Object perception in underwater environments: a survey on sensors and sensing methodologies

被引:72
作者
Huy, Dinh Quang [2 ]
Sadjoli, Nicholas [1 ,2 ]
Azam, Abu Bakr [2 ,3 ]
Elhadidi, Basman [4 ]
Cai, Yiyu [2 ,3 ]
Seet, Gerald [2 ]
机构
[1] SAAB, Singapore, Singapore
[2] Nanyang Technol Univ, SAAB NTU Joint Lab, Singapore, Singapore
[3] Nanyang Technol Univ, Energy Res Inst, Singapore, Singapore
[4] Nazarbayev Univ, Sch Engn & Digital Sci, Astana, Kazakhstan
关键词
Underwater robotic; Object perception; Turbid environment; IMAGE-RESOLUTION ENHANCEMENT; AUTOMATIC INTERPRETATION; SUPER RESOLUTION; CFAR PROCESSORS; TARGET TRACKING; SONAR; SEQUENCES; RECONSTRUCTION; FUSION;
D O I
10.1016/j.oceaneng.2022.113202
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Underwater robots play a critical role in the marine industry. Object perception is the foundation for the au-tomatic operations of submerged vehicles in dynamic aquatic environments. However, underwater perception encounters multiple environmental challenges, including rapid light attenuation, light refraction, or back -scattering effect. These problems reduce the sensing devices' signal-to-noise ratio (SNR), making underwater perception a complicated research topic. This paper describes the state-of-the-art sensing technologies and object perception techniques for underwater robots in different environmental conditions. Due to the current sensing modalities' various constraints and characteristics, we divide the perception ranges into close-range, medium-range, and long-range. We survey and describe recent advances for each perception range and suggest some potential future research directions worthy of investigating in this field.
引用
收藏
页数:25
相关论文
共 145 条
[11]   A Purely Model-Based Approach to Object Pose and Size Estimation With Electric Sense [J].
Bazeille, Stephane ;
Lebastard, Vincent ;
Boyer, Frederic .
IEEE TRANSACTIONS ON ROBOTICS, 2020, 36 (05) :1611-1618
[12]   Coregistered Hyperspectral and Stereo Image Seafloor Mapping from an Autonomous Underwater Vehicle [J].
Bongiorno, Daniel L. ;
Bryson, Mitch ;
Bridge, Tom C. L. ;
Dansereau, Donald G. ;
Williams, Stefan B. .
JOURNAL OF FIELD ROBOTICS, 2018, 35 (03) :312-329
[13]   Underwater navigation based on passive electric sense: New perspectives for underwater docking [J].
Boyer, Frederic ;
Lebastard, Vincent ;
Chevallereau, Christine ;
Mintchev, Stefano ;
Stefanini, Cesare .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2015, 34 (09) :1228-1250
[14]   OPTO-ACOUSTIC DATA FUSION FOR SUPPORTING THE GUIDANCE OF REMOTELY OPERATED UNDERWATER VEHICLES (ROVs) [J].
Bruno, F. ;
Lagudi, A. ;
Ritacco, G. ;
Muzzupappa, M. ;
Guida, R. .
UNDERWATER 3D RECORDING AND MODELING, 2015, 45 (W5) :47-53
[15]   Automatic interpretation of sonar image sequences using temporal feature measures [J].
Chantler, MJ ;
Stoner, JP .
IEEE JOURNAL OF OCEANIC ENGINEERING, 1997, 22 (01) :47-56
[16]  
Charalambides J., 2016, CONTROL ENG
[17]  
Chemisky B., 2021, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V43, DOI 10.5194/isprs-archives-XLIII-B2-2021-651-2021
[18]  
Chen H. L., 2021, OCEANS 2021, P1, DOI DOI 10.23919/OCEANS44145.2021.9706095
[19]   Monocular Vision-Based Underwater Object Detection [J].
Chen, Zhe ;
Zhang, Zhen ;
Dai, Fengzhao ;
Bu, Yang ;
Wang, Huibin .
SENSORS, 2017, 17 (08)
[20]  
Cheng C., 2022, FRONT NEUROROBOTICS, V15, P189, DOI [10.3389/FNBOT.2021.801956/BIBTEX, DOI 10.3389/FNBOT.2021.801956/BIBTEX]