Dimensionality reduction strategies for land use land cover classification based on airborne hyperspectral imagery: a survey

被引:29
作者
Moharram, Mohammed Abdulmajeed [1 ]
Sundaram, Divya Meena [1 ]
机构
[1] VIT AP Univ, Sch Comp Sci & Engn, Amaravati, Andhra Pradesh, India
基金
英国科研创新办公室;
关键词
Hyperspectral imaging; Feature extraction; Feature selection; Hughes phenomenon; Land use land cover; BAND SELECTION;
D O I
10.1007/s11356-022-24202-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hyperspectral image (HSI) contains hundreds of adjacent spectral bands, which can effectively differentiate the region of interest. Nevertheless, many irrelevant and highly correlated spectral bands lead to the Hughes phenomenon. Consequently, hyperspectral image dimensionality reduction is necessary to select the most informative and significant spectral band and eliminate the redundant spectral band. To this end, this paper represents an extensive and systematic survey of hyperspectral dimensionality reduction approaches for land use land cover (LULC) classification. Moreover, this paper reviewed the following important points: (1) hyperspectral imaging data acquisition methods, (2) the difference between hyperspectral and multispectral images, (3) hyperspectral image dimensionality reduction based on machine learning (ML) and deep learning (DL) techniques, (4) the popular benchmark hyperspectral datasets with the performance metrics for LULC classification, and (5) the significant challenges with the future trends for hyperspectral dimensionality reduction.
引用
收藏
页码:5580 / 5602
页数:23
相关论文
共 108 条
[1]   Semisupervised Band Selection From Hyperspectral Images Using Levy Flight-Based Genetic Algorithm [J].
Aghaee, Reza ;
Momeni, Mehdi ;
Moallem, Payman .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[2]  
Ahishali M, 2022, ARXIV
[3]  
Ahmad M, 2021, ARXIV
[4]   Artifacts of different dimension reduction methods on hybrid CNN feature hierarchy for Hyperspectral Image Classification [J].
Ahmad, Muhammad ;
Shabbir, Sidrah ;
Raza, Rana Aamir ;
Mazzara, Manuel ;
Distefano, Salvatore ;
Khan, Adil Mehmood .
OPTIK, 2021, 246
[5]   A deep learning framework for land-use/land-cover mapping and analysis using multispectral satellite imagery [J].
Alhassan, Victor ;
Henry, Christopher ;
Ramanna, Sheela ;
Storie, Christopher .
NEURAL COMPUTING & APPLICATIONS, 2020, 32 (12) :8529-8544
[6]  
Alshari EA, 2021, Global Transitions Proceedings, V2, P8, DOI [10.1016/j.gltp.2021.01.002, 10.1016/j.gltp.2021.01.002, DOI 10.1016/J.GLTP.2021.01.002]
[7]   Airborne Hyperspectral Imagery for Band Selection Using Moth-Flame Metaheuristic Optimization [J].
Anand, Raju ;
Samiaappan, Sathishkumar ;
Veni, Shanmugham ;
Worch, Ethan ;
Zhou, Meilun .
JOURNAL OF IMAGING, 2022, 8 (05)
[8]   Feature selection and classification of hyperspectral images, with support vector machines [J].
Archibald, Rick ;
Fann, George .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (04) :674-677
[9]   CNN-Based Super-Resolution of Hyperspectral Images [J].
Arun, P. V. ;
Buddhiraju, Krishna Mohan ;
Porwal, Alok ;
Chanussot, Jocelyn .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (09) :6106-6121
[10]   Unsupervised classification of land cover using multi-modal data from multi-spectral and hybrid-polarimetric SAR imageries [J].
Aswatha, Shashaank Mattur ;
Mukherjee, Jayanta ;
Biswas, Prabir K. ;
Aikat, Subhas .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (14) :5277-5304