A data-driven approach to analyse the co-evolution of urban systems through a resilience lens: A Helsinki case study

被引:6
作者
Casali, Ylenia [1 ,2 ,5 ,6 ]
Aydin, Nazli Yonca [1 ,3 ]
Comes, Tina [1 ,4 ]
机构
[1] Basque Ctr Climate Change BC3, Leioa, Spain
[2] Delft Univ Technol, TPM Resilience Lab, Delft, Netherlands
[3] Delft Univ Technol, Fac Technol Policy & Management, Syst Engn Sect, Delft, Netherlands
[4] Delft Univ Technol, Fac Technol Policy & Management, Dept Engn Syst & Serv, Delft, Netherlands
[5] Univ Basque Country, Basque Ctr Climate Change BC3, Sci Campus, Leioa 48940, Spain
[6] Delft Univ Technol, Dept Technol Policy & Management, Jaffalaan 5, NL-2628 BX Delft, Netherlands
关键词
Co-evolution; spatiotemporal data; Getis-Ord Gi*; road network; resilience; recovery; SPATIAL ASSOCIATION; LAND-USE; FRAMEWORK; DENSITY; POLICY; MODEL;
D O I
10.1177/23998083241235246
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Urban areas are dynamic systems, in which different infrastructural, social and economic subsystems continuously co-evolve. As such, disruptions in one system can propagate to another. However, open challenges remain in (i) assessing the long-term implications of change for resilience and (ii) understanding how resilience propagates throughout urban systems over time. Despite the increasing reliance on data in smart cities, few studies empirically investigate long-term urban co-evolution using data-driven methods, leading to a gap in urban resilience assessments. This paper presents an approach that combines Getis-ord Gi* statistical and correlation analyses to investigate how cities recover from crises and adapt by analysing how the spatial patterns of urban characteristics and their relationships changed over time. We illustrate our approach through a study on Helsinki's road infrastructure, socioeconomic system and built-up area from 1991 to 2016, a period marked by a major socioeconomic crisis. By analysing this case study, we provide insights into the co-evolution over more than two decades, thereby addressing the lack of longitudinal studies on urban resilience.
引用
收藏
页码:2074 / 2091
页数:18
相关论文
共 61 条
[1]   Resilience implications of policy responses to climate change [J].
Adger, W. Neil ;
Brown, Katrina ;
Nelson, Donald R. ;
Berkes, Fikret ;
Eakin, Hallie ;
Folke, Carl ;
Galvin, Kathleen ;
Gunderson, Lance ;
Goulden, Marisa ;
O'Brien, Karen ;
Ruitenbeek, Jack ;
Tompkins, Emma L. .
WILEY INTERDISCIPLINARY REVIEWS-CLIMATE CHANGE, 2011, 2 (05) :757-766
[2]   Social Capital and Community Resilience [J].
Aldrich, Daniel P. ;
Meyer, Michelle A. .
AMERICAN BEHAVIORAL SCIENTIST, 2015, 59 (02) :254-269
[3]  
Anguelovski I., 2017, ROUTLEDGE HDB ENV JU, P449
[4]   LOCAL INDICATORS OF SPATIAL ASSOCIATION - LISA [J].
ANSELIN, L .
GEOGRAPHICAL ANALYSIS, 1995, 27 (02) :93-115
[5]   Framework for improving the resilience and recovery of transportation networks under geohazard risks [J].
Aydin, Nazli Yonca ;
Duzgun, H. Sebnem ;
Heinimann, Hans Rudolf ;
Wenzel, Friedemann ;
Gnyawali, Kaushal Raj .
INTERNATIONAL JOURNAL OF DISASTER RISK REDUCTION, 2018, 31 :832-843
[6]   Mapping resilience of Houston freeway network during Hurricane Harvey using extreme travel time metrics [J].
Balakrishnan, Srijith ;
Zhang, Zhanmin ;
Machemehl, Randy ;
Murphy, Michael R. .
INTERNATIONAL JOURNAL OF DISASTER RISK REDUCTION, 2020, 47
[7]   Spatial networks [J].
Barthelemy, Marc .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2011, 499 (1-3) :1-101
[8]   Co-evolution of Density and Topology in a Simple Model of City Formation [J].
Barthelemy, Marc ;
Flammini, Alessandro .
NETWORKS & SPATIAL ECONOMICS, 2009, 9 (03) :401-425
[9]   A framework to quantitatively assess and enhance the seismic resilience of communities [J].
Bruneau, M ;
Chang, SE ;
Eguchi, RT ;
Lee, GC ;
O'Rourke, TD ;
Reinhorn, AM ;
Shinozuka, M ;
Tierney, K ;
Wallace, WA ;
von Winterfeldt, D .
EARTHQUAKE SPECTRA, 2003, 19 (04) :733-752
[10]   The role of complexity for digital twins of cities [J].
Caldarelli, G. ;
Arcaute, E. ;
Barthelemy, M. ;
Batty, M. ;
Gershenson, C. ;
Helbing, D. ;
Mancuso, S. ;
Moreno, Y. ;
Ramasco, J. J. ;
Rozenblat, C. ;
Sanchez, A. ;
Fernandez-Villacanas, J. L. .
NATURE COMPUTATIONAL SCIENCE, 2023, 3 (05) :374-381