Nuciferine reduces inflammation induced by cerebral ischemia-reperfusion injury through the PI3K/Akt/NF-κB pathway

被引:12
|
作者
Li, Jinhua [1 ,2 ]
Dong, Shuze [1 ,2 ]
Quan, Shengli [1 ,2 ]
Ding, Shuxian [1 ,2 ]
Zhou, Xuebin [1 ,2 ]
Yu, Ye [1 ,2 ]
Wu, Yarong [1 ,2 ]
Huang, Wenhai [1 ,2 ]
Shi, Qiyuan [1 ,2 ]
Li, Qin [1 ,2 ]
机构
[1] Hangzhou Med Coll, Sch Pharm, 182 Tian Mu Shan Rd, Hangzhou 310013, Zhejiang, Peoples R China
[2] Key Lab Neuropsychiat Drug Res Zhejiang Prov, Hangzhou, Zhejiang, Peoples R China
关键词
Cerebral ischemia-reperfusion injury; Inflammation; Nuciferine; NLRP3; BUTYLPHTHALIDE; EDARAVONE; STROKE;
D O I
10.1016/j.phymed.2023.155312
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Cerebral ischemia has the characteristics of high incidence, mortality, and disability, which seriously damages people's health. Cerebral ischemia-reperfusion injury is the key pathological injury of this disease. However, there is a lack of drugs that can reduce cerebral ischemia-reperfusion injury in clinical practice. At present, a few studies have provided some evidence that nuciferine can reduce cerebral ischemia-reperfusion injury, but its specific mechanism of action is still unclear, and further research is still needed. Objective: In this study, PC12 cells and SD rats were used to construct OGD/R and MCAO/R models, respectively. Combined with bioinformatics methods and experimental verification methods, the purpose of this study was to conduct a systematic and comprehensive study on the effect and mechanism of nuciferine on reducing inflammation induced by cerebral ischemia-reperfusion injury. Results: Nuciferine can improve the cell viability of PC12 cells induced by OGD/R, reduce apoptosis, and reduce the expression of inflammation-related proteins; it can also improve the cognitive and motor dysfunction of MCAO/R-induced rats by behavioral tests, reduce the area of cerebral infarction, reduce the release of inflammatory factors TNF-alpha and IL-6 in serum and the expression of inflammation-related proteins in brain tissue. Conclusion: Nuciferine can reduce the inflammatory level of cerebral ischemia-reperfusion injury in vivo and in vitro models by acting on the PI3K/Akt/NF-kappa B signaling pathway, and has the potential to be developed as a drug for the treatment of cerebral ischemia-reperfusion injury.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Ginsenoside Rd Attenuates Myocardial Ischemia/Reperfusion Injury by Inhibiting Inflammation and Apoptosis through PI3K/Akt Signaling Pathway
    Wang, Yuanping
    Zheng, Jiading
    Xiao, Xieyang
    Feng, Cailing
    Li, Yinghong
    Su, Hui
    Yuan, Ding
    Wang, Qinghai
    Huang, Peihong
    Jin, Lili
    AMERICAN JOURNAL OF CHINESE MEDICINE, 2024, 52 (02): : 433 - 451
  • [32] Remimazolam attenuates myocardial ischemia-reperfusion injury by inhibiting the NF-ĸB pathway of macrophage inflammation
    Xu, Hao
    Chen, Yizhu
    Xie, Pengyun
    Lei, Tailong
    Liu, Keyu
    Liu, Xiaolei
    Tang, Jin
    Zhang, Liangqing
    Yang, Jihong
    Hu, Zhe
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2024, 965
  • [33] Sanggenol L Reduces LPS-induced Myocardial Injury and Inflammation by Activating PI3K/AKT/mTOR and Inhibiting NF-κB in Rats
    Wang, Haojun
    Jin, Tao
    Mao, Yuehan
    Wei, Yi
    PHARMACOGNOSY MAGAZINE, 2024,
  • [34] Leptin alleviates endoplasmic reticulum stress induced by cerebral ischemia/reperfusion injury via the PI3K/Akt signaling pathway
    Zhang, Yan
    Cheng, Daobin
    Jie, Chunxiao
    Liu, Tao
    Huang, Shixiong
    Hu, Shijun
    BIOSCIENCE REPORTS, 2022, 42 (12)
  • [35] Nobiletin alleviates ischemia/reperfusion injury in the kidney by activating PI3K/AKT pathway
    Liu, Bo
    Deng, Quanhong
    Zhang, Lei
    Zhu, Wen
    MOLECULAR MEDICINE REPORTS, 2020, 22 (06) : 4655 - 4662
  • [36] Hypothermic machine perfusion reduces donation after circulatory death liver ischemia-reperfusion injury through the SERPINA3-mediated PI3Kδ/Akt pathway
    Peng, Sheng
    Liang, Wenjin
    Liu, Zhongzhong
    Ye, Shaojun
    Peng, Zhiyong
    Zhong, Zibiao
    Ye, Qifa
    HUMAN CELL, 2024, 37 (02) : 420 - 434
  • [37] Dexmedetomidine pretreatment alleviates brain injury in middle cerebral artery occlusion (MCAO) model rats by activating PI3K/AKT/NF-κB signaling pathway
    Gao, Wei
    Lv, Xue
    Li, Hao
    Yan, Xu-Sheng
    Huo, Dong-Sheng
    Yang, Zhan-Jun
    Zhang, Zhi-Guo
    Jia, Jian-Xin
    JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A-CURRENT ISSUES, 2025, : 546 - 556
  • [38] Ibrutinib ameliorates cerebral ischemia/reperfusion injury through autophagy activation and PI3K/Akt/mTOR signaling pathway in diabetic mice
    Jin, Lei
    Mo, Yun
    Yue, Er-Li
    Liu, Yuan
    Liu, Kang-Yong
    BIOENGINEERED, 2021, 12 (01) : 7432 - 7445
  • [39] Vinpocetine Protects Against Cerebral Ischemia-Reperfusion Injury by Targeting Astrocytic Connexin43 via the PI3K/AKT Signaling Pathway
    Zhao, Mingming
    Hou, Shuai
    Feng, Liangshu
    Shen, Pingping
    Nan, Di
    Zhang, Yunhai
    Wang, Famin
    Ma, Di
    Feng, Jiachun
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [40] The effect of focal cerebral ischemia-reperfusion injury on TLR4 and NF-κB signaling pathway
    Chen, Jing
    Yang, Chenli
    Xu, Xiang
    Yang, Yonglin
    Xu, Bo
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2018, 15 (01) : 897 - 903