Nuciferine reduces inflammation induced by cerebral ischemia-reperfusion injury through the PI3K/Akt/NF-κB pathway

被引:11
|
作者
Li, Jinhua [1 ,2 ]
Dong, Shuze [1 ,2 ]
Quan, Shengli [1 ,2 ]
Ding, Shuxian [1 ,2 ]
Zhou, Xuebin [1 ,2 ]
Yu, Ye [1 ,2 ]
Wu, Yarong [1 ,2 ]
Huang, Wenhai [1 ,2 ]
Shi, Qiyuan [1 ,2 ]
Li, Qin [1 ,2 ]
机构
[1] Hangzhou Med Coll, Sch Pharm, 182 Tian Mu Shan Rd, Hangzhou 310013, Zhejiang, Peoples R China
[2] Key Lab Neuropsychiat Drug Res Zhejiang Prov, Hangzhou, Zhejiang, Peoples R China
关键词
Cerebral ischemia-reperfusion injury; Inflammation; Nuciferine; NLRP3; BUTYLPHTHALIDE; EDARAVONE; STROKE;
D O I
10.1016/j.phymed.2023.155312
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Cerebral ischemia has the characteristics of high incidence, mortality, and disability, which seriously damages people's health. Cerebral ischemia-reperfusion injury is the key pathological injury of this disease. However, there is a lack of drugs that can reduce cerebral ischemia-reperfusion injury in clinical practice. At present, a few studies have provided some evidence that nuciferine can reduce cerebral ischemia-reperfusion injury, but its specific mechanism of action is still unclear, and further research is still needed. Objective: In this study, PC12 cells and SD rats were used to construct OGD/R and MCAO/R models, respectively. Combined with bioinformatics methods and experimental verification methods, the purpose of this study was to conduct a systematic and comprehensive study on the effect and mechanism of nuciferine on reducing inflammation induced by cerebral ischemia-reperfusion injury. Results: Nuciferine can improve the cell viability of PC12 cells induced by OGD/R, reduce apoptosis, and reduce the expression of inflammation-related proteins; it can also improve the cognitive and motor dysfunction of MCAO/R-induced rats by behavioral tests, reduce the area of cerebral infarction, reduce the release of inflammatory factors TNF-alpha and IL-6 in serum and the expression of inflammation-related proteins in brain tissue. Conclusion: Nuciferine can reduce the inflammatory level of cerebral ischemia-reperfusion injury in vivo and in vitro models by acting on the PI3K/Akt/NF-kappa B signaling pathway, and has the potential to be developed as a drug for the treatment of cerebral ischemia-reperfusion injury.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] The Effect of Angelica sinensis Polysaccharide on Neuronal Apoptosis in Cerebral Ischemia-Reperfusion Injury via PI3K/AKT Pathway
    Xu, Haibo
    Chen, Jing
    Liu, Wenbing
    Li, Hui
    Yu, Zhenghong
    Zeng, Chao
    INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2021, 2021
  • [32] Neuroprotective effect of humanin on cerebral ischemia/reperfusion injury is mediated by a PI3K/Akt pathway
    Xu, Xingshun
    Chua, Chu Chang
    Gao, Finping
    Chua, Kao-Wei
    Wang, Hong
    Hamdy, Ronald C.
    Chua, Balvin H. L.
    BRAIN RESEARCH, 2008, 1227 : 12 - 18
  • [33] Activation of cannabinoid receptor type 2 reduces lung ischemia reperfusion injury through PI3K/Akt pathway
    Zeng, Jieting
    Li, Xuehan
    Cheng, Yan
    Ke, Bowen
    Wang, Rurong
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2019, 12 (11): : 4096 - 4105
  • [34] Cornin protects astrocytes against autophagy induced by cerebral ischemia-reperfusion via PI3K/Akt/mTOR pathway
    LAN Tian-chi
    XU Yang-yang
    LI Shu-cui
    LIU Hui
    ZHU Hai-bo
    ZHANG Shu-ping
    中国药理学与毒理学杂志, 2019, (10) : 845 - 846
  • [35] Propofol can suppress renal ischemia-reperfusion injury through the activation of PI3K/AKT/mTOR signal pathway
    Wei, Qianjie
    Zhao, Jinjuan
    Zhou, Xingguo
    Yu, Lili
    Liu, Zhaohui
    Chang, Yulin
    GENE, 2019, 708 : 14 - 20
  • [36] Puerarin inhibited oxidative stress and alleviated cerebral ischemia-reperfusion injury through PI3K/Akt/Nrf2 signaling pathway
    Zhang, Qianqian
    Yao, Min
    Qi, Jiajia
    Song, Rui
    Wang, Lei
    Li, Jiacheng
    Zhou, Xian
    Chang, Dennis
    Huang, Qi
    Li, Lili
    Wang, Ning
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [37] Tricin attenuates cerebral ischemia/reperfusion injury through inhibiting nerve cell autophagy, apoptosis and inflammation by regulating the PI3K/Akt pathway
    Liu, Ying
    Qu, Xiaoning
    Yan, Mengjun
    Li, Dalei
    Zou, Rong
    HUMAN & EXPERIMENTAL TOXICOLOGY, 2022, 41
  • [38] Edaravone dexborneol alleviates cerebral ischemia-reperfusion injury through NF-κB/NLRP3 signal pathway
    Shen, Guanghong
    Lou, Chengjian
    Li, Qunfeng
    Zhao, Bingxin
    Luo, Yuhuan
    Wu, Fei
    Jiao, Dian
    Fang, Marong
    Geng, Yu
    ANATOMICAL RECORD-ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, 2024, 307 (02): : 372 - 384
  • [39] Tricin attenuates cerebral ischemia/reperfusion injury through inhibiting nerve cell autophagy, apoptosis and inflammation by regulating the PI3K/Akt pathway
    Liu, Ying
    Qu, Xiaoning
    Yan, Mengjun
    Li, Dalei
    Zou, Rong
    HUMAN & EXPERIMENTAL TOXICOLOGY, 2022, 41
  • [40] Gap junctional intercellular communication dysfunction mediates the cognitive impairment induced by cerebral ischemia-reperfusion injury: PI3K/Akt pathway involved
    Zhou, Shujun
    Fang, Zheng
    Wang, Gui
    Wu, Song
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2017, 9 (12): : 5442 - 5451