Periodic solutions to a class of quasi-variational evolution equations

被引:0
作者
Kubo, Masahiro
Yamazaki, Noriaki [1 ,2 ]
机构
[1] Wakayama Univ, Fac Syst Engn, Sakaedani 930, Wakayama 6408510, Japan
[2] Kanagawa Univ, Fac Informat, Appl Syst & Math, Rokkakubashi 3-27-1, Yokohama 2218686, Japan
关键词
INEQUALITIES;
D O I
10.1016/j.jde.2023.11.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a time-periodicity problem for a class of abstract nonlinear evolution equations associated with subdifferential operators depending on both time and the unknown. Assuming time-periodicity for the subdifferential operator, we prove the existence of a periodic solution using the abstract theory of time-dependent subdifferential evolution equations and its generalization. We provide application examples for quasilinear parabolic variational inequalities with time-periodic constraints of non-local time-delay or memory type depending on the unknown.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:165 / 192
页数:28
相关论文
共 33 条
  • [1] Akagi G., 2004, Abstract and Applied Analysis, V2004, P907, DOI 10.1155/S1085337504403030
  • [2] Attouch H., 1979, Annali di Matematica Pura ed Applicata, V120, P35, DOI 10.1007/BF02411939
  • [3] BENSOUSSAN A, 1973, CR ACAD SCI A MATH, V276, P1333
  • [4] Biroli M., 1985, Comment. Math. Univ. Carol., V26, P23
  • [5] Brezis H., 1973, Notas de Matematica, V5
  • [6] Friedman A., 1982, WILEY INTERSCIENCE P
  • [7] Jones G.S., 1962, J MATH ANAL APPL, V5, P435, DOI 10.1016/0022-247X(62)90017-3
  • [8] Kano R., 2009, ADV MATH SCI APPL, V19, P565
  • [9] SOME NONLINEAR PARABOLIC VARIATIONAL INEQUALITIES
    KENMOCHI, N
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1975, 22 (3-4) : 304 - 331
  • [10] Kenmochi N., 1981, Bull. Fac. Educ., Chiba Univ. Part II, V30, P1