Study on propagation properties of fractional soliton in the inhomogeneous fiber with higher-order effects

被引:13
作者
Liu, Muwei [1 ]
Wang, Haotian [1 ]
Yang, Hujiang [1 ]
Liu, Wenjun [1 ,2 ]
机构
[1] Sch Sci Org Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] North China Elect Power Univ, Hebei Key Lab Phys & Energy Technol Org, Baoding 071000, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划; 北京市自然科学基金;
关键词
Fractional derivative; Hirota bilinear method; Fractional soliton; Double-humped soliton; Modified Kudryashov method; MODIFIED KUDRYASHOV METHOD; NONLINEAR SCHRODINGER-EQUATIONS; BACKLUND TRANSFORMATION; DARBOUX TRANSFORMATION; EXCITATIONS; SYSTEM;
D O I
10.1007/s11071-023-09099-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper investigates a coupled higher-order variable-coefficient nonlinear Schrodinger equation, which may have some prospective applications in optical fiber communications. We present a modified Kudryashov method, which can be successfully applied to the fractional variable-coefficient equations with the modified Riemann-Liouville fractional derivative and obtain the soliton solution. The double-hump solitons and multi-soliton solutions are given via the Hirota bilinear method. Furthermore, we study the interaction of solitons by dynamical analysis and consider some important physical quantities. The relationship between the dynamical structure of the solitons and the certain parameters in the fractional nonlinear optical system is given by analyzing the analytical expressions and the dynamical images of the exact solutions. The results of this paper are helpful in promoting the study of fractional nonlinear optical systems and have theoretical guidance for optical communication in inhomogeneous optical fibers.
引用
收藏
页码:1327 / 1337
页数:11
相关论文
共 66 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]  
Agrawal GP, 2013, 2013 OPTICAL FIBER COMMUNICATION CONFERENCE AND EXPOSITION AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE (OFC/NFOEC)
[3]   Travelling wave solution for the Landau-Ginburg-Higgs model via the inverse scattering transformation method [J].
Ali, Mohamed R. ;
Khattab, Mahmoud A. ;
Mabrouk, S. M. .
NONLINEAR DYNAMICS, 2023, 111 (08) :7687-7697
[4]   Thresholds between modulational stability, rogue waves and soliton regimes in saturable nonlinear media [J].
Bezerra, L. J. R. ;
Morais, D. ;
Buarque, A. R. C. ;
Passos, F. S. ;
Dias, W. S. .
NONLINEAR DYNAMICS, 2023, 111 (07) :6629-6638
[5]   Dark solitons in Bose-Einstein condensates [J].
Burger, S ;
Bongs, K ;
Dettmer, S ;
Ertmer, W ;
Sengstock, K ;
Sanpera, A ;
Shlyapnikov, GV ;
Lewenstein, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (25) :5198-5201
[6]   Nondegenerate solitons for coupled higher-order nonlinear Schrodinger equations in optical fibers [J].
Cai, Yue-Jin ;
Wu, Jian-Wen ;
Hu, Lang-Tao ;
Lin, Ji .
PHYSICA SCRIPTA, 2021, 96 (09)
[7]   More general families of exact solitary wave solutions of the nonlinear Schrodinger equation with their applications in nonlinear optics [J].
Cheemaa, Nadia ;
Seadawy, Aly R. ;
Chen, Sheng .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (12)
[8]   Alfven solitons and generalized Darboux transformation for a variable-coefficient derivative nonlinear Schrodinger equation in an inhomogeneous plasma [J].
Chen, Su -Su ;
Tian, Bo ;
Qu, Qi-Xing ;
Li, He ;
Sun, Yan ;
Du, Xia-Xia .
CHAOS SOLITONS & FRACTALS, 2021, 148
[9]   Soliton Turbulence in Shallow Water Ocean Surface Waves [J].
Costa, Andrea ;
Osborne, Alfred R. ;
Resio, Donald T. ;
Alessio, Silvia ;
Chrivi, Elisabetta ;
Saggese, Enrica ;
Bellomo, Katinka ;
Long, Chuck E. .
PHYSICAL REVIEW LETTERS, 2014, 113 (10)
[10]   Generating solitons by phase engineering of a Bose-Einstein condensate [J].
Denschlag, J ;
Simsarian, JE ;
Feder, DL ;
Clark, CW ;
Collins, LA ;
Cubizolles, J ;
Deng, L ;
Hagley, EW ;
Helmerson, K ;
Reinhardt, WP ;
Rolston, SL ;
Schneider, BI ;
Phillips, WD .
SCIENCE, 2000, 287 (5450) :97-101