Multi-Agent Reinforcement Learning for Slicing Resource Allocation in Vehicular Networks

被引:15
作者
Cui, Yaping [1 ,2 ]
Shi, Hongji [1 ,3 ,4 ]
Wang, Ruyan [1 ,3 ,4 ]
He, Peng [1 ,3 ,4 ]
Wu, Dapeng [1 ,3 ,4 ]
Huang, Xinyun [1 ,3 ,4 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Univ Elect Sci & Technol China UESTC, Sch Aeronaut & Astronaut, Chengdu 611731, Peoples R China
[3] Chongqing Educ Commiss China, Adv Network & Intelligent Connect Technol Key Lab, Chongqing 400065, Peoples R China
[4] Chongqing Key Lab Ubiquitous Sensing & Networking, Chongqing 400065, Peoples R China
关键词
Vehicular networks; network slicing; deep rein-forcement learning; resource allocation; 5G; INTELLIGENT; EMBB;
D O I
10.1109/TITS.2023.3314929
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To support diverse Internet of vehicles (IoV) services with different quality of service (QoS) requirements, network slicing is applied in vehicular networks to establish multiple logically isolated networks on common physical network infrastructure. However, dynamic and efficient radio access network (RAN) slicing adapting to the dynamics of vehicular networks remains challenging. The diverse applications make multi-dimensional resource requirements, which will result in the resource allocation more complicated. In addition, the system needs to frequently adjust the resources of slices, which will cause additional slicing overhead. Thus, to solve the above problems, we propose a resource allocation strategy by using multi-agent reinforcement learning to allocate resources in vehicular networks. Firstly, the cost composition of RAN slicing is analyzed, and the optimization problem is formulated to minimize the long-term system cost. Then, we transform the resource allocation problem into a partially observable Markov decision process. Finally, we propose a multi-agent deep deterministic policy gradient based resource allocation algorithm to solve it. All base stations are treated as independent agents, and they cooperatively allocate spectrum and computing resources. Simulation results show that the proposed strategy reduces the system cost effectively compared to the benchmarks, and the average QoS satisfaction rate achieves 96.5%.
引用
收藏
页码:2005 / 2016
页数:12
相关论文
共 35 条
[1]   Network Slicing and Softwarization: A Survey on Principles, Enabling Technologies, and Solutions [J].
Afolabi, Ibrahim ;
Taleb, Tarik ;
Samdanis, Konstantinos ;
Ksentini, Adlen ;
Flinck, Hannu .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2018, 20 (03) :2429-2453
[2]   Intelligent Resource Slicing for eMBB and URLLC Coexistence in 5G and Beyond: A Deep Reinforcement Learning Based Approach [J].
Alsenwi, Madyan ;
Tran, Nguyen H. ;
Bennis, Mehdi ;
Pandey, Shashi Raj ;
Bairagi, Anupam Kumar ;
Hong, Choong Seon .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (07) :4585-4600
[3]  
[Anonymous], 2015, REC ITU M SERIES, P2083
[4]  
[Anonymous], 2018, TS36101V1500 3GPP
[5]   Energy-Efficient Deep Reinforcement Learning Assisted Resource Allocation for 5G-RAN Slicing [J].
Azimi, Yaser ;
Yousefi, Saleh ;
Kalbkhani, Hashem ;
Kunz, Thomas .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (01) :856-871
[6]  
BENAMEUR W, 2021, PROC IEEE GLOBAL COM, P1
[7]   5G NETWORK SLICING FOR VEHICLE-TO-EVERYTHING SERVICES [J].
Campolo, Claudia ;
Molinaro, Antonella ;
Iera, Antonio ;
Menichella, Francesco .
IEEE WIRELESS COMMUNICATIONS, 2017, 24 (06) :38-45
[8]   Joint Load Balancing and Offloading in Vehicular Edge Computing and Networks [J].
Dai, Yueyue ;
Xu, Du ;
Maharjan, Sabita ;
Zhang, Yan .
IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (03) :4377-4387
[9]   Dynamic Network Slicing and Resource Allocation in Mobile Edge Computing Systems [J].
Feng, Jie ;
Pei, Qingqi ;
Yu, F. Richard ;
Chu, Xiaoli ;
Du, Jianbo ;
Zhu, Li .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (07) :7863-7878
[10]  
Foerster JN, 2016, ADV NEUR IN, V29