Deep Learning-Based Phase Unwrapping Method

被引:5
|
作者
Li, Dongxu [1 ]
Xie, Xianming [2 ]
机构
[1] Guangxi Univ Sci & Technol, Sch Automat, Liuzhou 545006, Guangxi, Peoples R China
[2] Guangxi Univ Sci & Technol, Sch Elect Engn, Liuzhou 545006, Guangxi, Peoples R China
来源
IEEE ACCESS | 2023年 / 11卷
基金
中国国家自然科学基金;
关键词
Deep learning; noise evaluation; phase unwrapping; spatial and channel attention network; CONVOLUTIONAL NEURAL-NETWORK; UNSCENTED KALMAN FILTER; ALGORITHM; INTERFEROMETRY;
D O I
10.1109/ACCESS.2023.3303186
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A phase unwrapping method based on spatial and channel attention network is proposed to retrieve true phases from interferograms with various levels of noise. First, we propose a network that is suitable for unwrapping wrapped phase images. This network utilizes Deeplabv3+ as the backbone, adopts a serial-parallel atrous spatial pyramid pooling module, implements multi-scale skip connections between the encoder-decoder models, and fuses a convolutional block attention module. Second, datasets with different noise levels are used to train the network employing an existing noise level evaluation system, and the trained networks effectively handle the phase unwrapping for interferograms. Finally, the interferograms are unwrapped by the networks with the same noise level as the interferograms. The experimental results of phase unwrapping for interferograms fully verify the performance of this method.
引用
收藏
页码:85836 / 85851
页数:16
相关论文
共 50 条
  • [41] Deep Learning-based Single Frame Phase Retrieval
    Guan, Qingze
    Sheng, Zhichao
    Wang, Fanzhou
    Wang, Chenxing
    SEVENTH INTERNATIONAL CONFERENCE ON OPTICAL AND PHOTONIC ENGINEERING (ICOPEN 2019), 2019, 11205
  • [42] A DETAIL-PRESERVATION METHOD OF DEEP LEARNING ONE-STEP PHASE UNWRAPPING
    Ye, Xin
    Qian, Jiang
    Wang, Yong
    Yu, Hanwen
    Wang, Lu
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1115 - 1118
  • [43] VDE-Net: a two-stage deep learning method for phase unwrapping
    Zhao, Jiaxi
    Liu, Lin
    Wang, Tianhe
    Wang, Xianzhou
    DU, Xiaohui
    Hao, Ruqian
    Liu, Juanxiu
    Liu, Yong
    Zhang, Jing
    OPTICS EXPRESS, 2022, 30 (22) : 39794 - 39815
  • [44] A method for phase unwrapping based on digital spackle correlation
    He, Dong
    Li, Ameng
    Liu, Xiaoli
    Peng, Xiang
    OPTICAL METROLOGY AND INSPECTION FOR INDUSTRIAL APPLICATIONS II, 2012, 8563
  • [45] Deep Learning-Based SNR Estimation
    Zheng, Shilian
    Chen, Shurun
    Chen, Tao
    Yang, Zhuang
    Zhao, Zhijin
    Yang, Xiaoniu
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 4778 - 4796
  • [46] DEEP LEARNING-BASED DECODING FOR PHASE SHIFT KEYING
    Yildirim, Mete
    Sokullu, Radosveta
    INTERNATIONAL JOURNAL ON INFORMATION TECHNOLOGIES AND SECURITY, 2021, 13 (01): : 39 - 50
  • [47] Deep learning-based fall detection
    Chiang, Jason Wei Hoe
    Zhang, Li
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 891 - 898
  • [48] Deep Learning-Based Sphere Decoding
    Mohammadkarimi, Mostafa
    Mehrabi, Mehrtash
    Ardakani, Masoud
    Jing, Yindi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (09) : 4368 - 4378
  • [49] A deep learning-based constrained intelligent routing method
    Rao, Zheheng
    Xu, Yanyan
    Pan, Shaoming
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2021, 14 (04) : 2224 - 2235
  • [50] A Deep Learning-Based Innovative Points Extraction Method
    Yu, Tao
    Wang, Rui
    Zhan, Hongfei
    Lin, Yingjun
    Yu, Junhe
    ADVANCES IN NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, ICNC-FSKD 2022, 2023, 153 : 130 - 138