Deep Learning-Based Phase Unwrapping Method

被引:5
|
作者
Li, Dongxu [1 ]
Xie, Xianming [2 ]
机构
[1] Guangxi Univ Sci & Technol, Sch Automat, Liuzhou 545006, Guangxi, Peoples R China
[2] Guangxi Univ Sci & Technol, Sch Elect Engn, Liuzhou 545006, Guangxi, Peoples R China
来源
IEEE ACCESS | 2023年 / 11卷
基金
中国国家自然科学基金;
关键词
Deep learning; noise evaluation; phase unwrapping; spatial and channel attention network; CONVOLUTIONAL NEURAL-NETWORK; UNSCENTED KALMAN FILTER; ALGORITHM; INTERFEROMETRY;
D O I
10.1109/ACCESS.2023.3303186
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A phase unwrapping method based on spatial and channel attention network is proposed to retrieve true phases from interferograms with various levels of noise. First, we propose a network that is suitable for unwrapping wrapped phase images. This network utilizes Deeplabv3+ as the backbone, adopts a serial-parallel atrous spatial pyramid pooling module, implements multi-scale skip connections between the encoder-decoder models, and fuses a convolutional block attention module. Second, datasets with different noise levels are used to train the network employing an existing noise level evaluation system, and the trained networks effectively handle the phase unwrapping for interferograms. Finally, the interferograms are unwrapped by the networks with the same noise level as the interferograms. The experimental results of phase unwrapping for interferograms fully verify the performance of this method.
引用
收藏
页码:85836 / 85851
页数:16
相关论文
共 50 条
  • [21] A Robust InSAR Phase Unwrapping Method via Improving the pix2pix Network
    Zhang, Long
    Huang, Guoman
    Li, Yutong
    Yang, Shucheng
    Lu, Lijun
    Huo, Wenhao
    REMOTE SENSING, 2023, 15 (19)
  • [22] A deep learning-based method for the design of microstructural materials
    Tan, Ren Kai
    Zhang, Nevin L.
    Ye, Wenjing
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 61 (04) : 1417 - 1438
  • [23] Deep learning-based fringe pattern transformation method for phase calculation
    Yu, Haotian
    Zhao, Yang
    Zheng, Dongliang
    Han, Jing
    Zhang, Yi
    FOURTH INTERNATIONAL CONFERENCE ON PHOTONICS AND OPTICAL ENGINEERING, 2021, 11761
  • [24] InSAR-DLPU: A benchmark dataset for deep learning-based synthetic aperture radar interferometry phase unwrapping
    Zhou, Lifan
    Yu, Hanwen
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2024, 12 (02) : 118 - 124
  • [25] A Novel Two-Stage Learning-Based Phase Unwrapping Algorithm via Multimodel Fusion
    Yan, Chao
    Li, Tao
    Gao, Yandong
    Li, Shijin
    Zhang, Xiang
    Zhang, Xuefei
    Zhang, Di
    Liu, Huiqin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 7468 - 7479
  • [26] MoDL-PU: Model-Based Deep Learning for InSAR Phase Unwrapping
    Zhou, Lifan
    Yu, Hanwen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [27] Dual-frequency phase unwrapping based on deep learning driven by simulation dataset
    Li, Ze
    Zhang, Wen
    Shan, Shuo
    Xu, Peng
    Liu, Jintao
    Wang, Jianhua
    Wang, Suzhen
    Yang, Yanxi
    OPTICS AND LASERS IN ENGINEERING, 2024, 178
  • [28] Unifying temporal phase unwrapping framework using deep learning
    Guo, Xinming
    Li, Yixuan
    Qian, Jiaming
    Che, Yuxuan
    Zuo, Chao
    Chen, Qian
    Lam, Edmund Y.
    Wang, Huai
    Feng, Shijie
    OPTICS EXPRESS, 2023, 31 (10) : 16659 - 16675
  • [29] One-step robust deep learning phase unwrapping
    Wang, Kaiqiang
    Li, Ying
    Qian Kemao
    Di, Jianglei
    Zhao, Jianlin
    OPTICS EXPRESS, 2019, 27 (10) : 15100 - 15115
  • [30] Phase Unwrapping of Color Doppler Echocardiography Using Deep Learning
    Ling, Hang Jung
    Bernard, Olivier
    Ducros, Nicolas
    Garcia, Damien
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2023, 70 (08) : 810 - 820