Adversarial Deep Transfer Learning in Fault Diagnosis: Progress, Challenges, and Future Prospects

被引:6
|
作者
Guo, Yu [1 ]
Zhang, Jundong [1 ]
Sun, Bin [1 ]
Wang, Yongkang [1 ]
机构
[1] Dalian Maritime Univ, Coll Marine Engn, Dalian 116026, Peoples R China
关键词
fault diagnosis; generative adversarial network; transfer learning; domain adaptation; deep transfer learning; DOMAIN ADAPTATION MODEL; TRANSFER NETWORK; AUTO-ENCODER; CONSTRUCTION; DISCREPANCY; ATTENTION; FRAMEWORK;
D O I
10.3390/s23167263
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Deep Transfer Learning (DTL) signifies a novel paradigm in machine learning, merging the superiorities of deep learning in feature representation with the merits of transfer learning in knowledge transference. This synergistic integration propels DTL to the forefront of research and development within the Intelligent Fault Diagnosis (IFD) sphere. While the early DTL paradigms, reliant on fine-tuning, demonstrated effectiveness, they encountered considerable obstacles in complex domains. In response to these challenges, Adversarial Deep Transfer Learning (ADTL) emerged. This review first categorizes ADTL into non-generative and generative models. The former expands upon traditional DTL, focusing on the efficient transference of features and mapping relationships, while the latter employs technologies such as Generative Adversarial Networks (GANs) to facilitate feature transformation. A thorough examination of the recent advancements of ADTL in the IFD field follows. The review concludes by summarizing the current challenges and future directions for DTL in fault diagnosis, including issues such as data imbalance, negative transfer, and adversarial training stability. Through this cohesive analysis, this review aims to offer valuable insights and guidance for the optimization and implementation of ADTL in real-world industrial scenarios.
引用
收藏
页数:39
相关论文
共 50 条
  • [21] Transfer Learning Method Based on Adversarial Domain Adaption for Bearing Fault Diagnosis
    Shao, Jiajie
    Huang, Zhiwen
    Zhu, Jianmin
    IEEE ACCESS, 2020, 8 : 119421 - 119430
  • [22] Mechanical fault diagnosis based on deep transfer learning: a review
    Yang, Dalian
    Zhang, Wenbin
    Jiang, Yongzheng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [23] Deep transfer learning with limited data for machinery fault diagnosis
    Han, Te
    Liu, Chao
    Wu, Rui
    Jiang, Dongxiang
    APPLIED SOFT COMPUTING, 2021, 103
  • [24] Application of Deep Transfer Learning in Fault Diagnosis of Integrated Transmission
    Li, Yingshun
    Qiu, Tao
    Sui, Huanhuan
    Wang, Debiao
    2023 PROGNOSTICS AND HEALTH MANAGEMENT CONFERENCE, PHM, 2023, : 284 - 286
  • [25] A fault diagnosis method of bearings based on deep transfer learning
    Huang, Min
    Yin, Jinghan
    Yan, Shumin
    Xue, Pengcheng
    SIMULATION MODELLING PRACTICE AND THEORY, 2023, 122
  • [26] Diesel engine fault diagnosis based on deep transfer learning
    Song Y.
    Ma G.
    Pei G.
    Zhang J.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (21): : 219 - 226
  • [27] Deep domain adversarial method with central moment discrepancy for intelligent transfer fault diagnosis
    Xu, Kun
    Li, Shunming
    Li, Ranran
    Lu, Jiantao
    Zeng, Mengjie
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (12)
  • [28] Deep Transfer Learning With Generalized Distribution Matching Measure for Rotating Machinery Fault Diagnosis
    Zhu, Peng
    Ma, Sai
    Han, Qinkai
    Chu, Fulei
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025,
  • [29] Improved Conditional Domain Adversarial Networks for Intelligent Transfer Fault Diagnosis
    Qin, Haihua
    Pan, Jiafang
    Li, Jian
    Huang, Faguo
    MATHEMATICS, 2024, 12 (03)
  • [30] Digital twin aided adversarial transfer learning method for domain adaptation fault diagnosis
    Wang, Jinrui
    Zhang, Zongzhen
    Liu, Zhiliang
    Han, Baokun
    Bao, Huaiqian
    Ji, Shanshan
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 234