A Sharp Gradient Estimate and W2,q Regularity for the Prescribed Mean Curvature Equation in the Lorentz-Minkowski Space

被引:0
作者
Bonheure, Denis [1 ]
Iacopetti, Alessandro [2 ]
机构
[1] Univ Libre Bruxelles, Dept Math, Campus Plaine CP214 Blvd Triomphe, B-1050 Brussels, Belgium
[2] Univ Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
关键词
RADIAL GRAPHS; HYPERSURFACES; SURFACES; FOUNDATIONS;
D O I
10.1007/s00205-023-01910-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the prescribed mean curvature equation for entire spacelike hypersurfaces in the Lorentz-Minkowski space, namely -div(del u/root 1-|del u|(2)) =rho in R-N , where N (sic) 3. We first prove a new gradient estimate for classical solutions with smooth data rho. As a consequence, we obtain that the unique weak solution of the equation satisfying a homogeneous boundary condition at infinity is locally of class W-2,W-q and strictly spacelike in R-N, provided that rho is an element of L-q (R-N) boolean AND L-m(R-N) with q > N and m is an element of [1, 2N/N+2].
引用
收藏
页数:44
相关论文
共 51 条
[1]   Calabi-Bernstein results for maximal surfaces in Lorentzian product spaces [J].
Albujer, Alma L. ;
Alias, Luis J. .
JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (05) :620-631
[2]   UNIQUENESS OF COMPLETE SPACELIKE HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN GENERALIZED ROBERTSON-WALKER SPACETIMES [J].
ALIAS, LJ ;
ROMERO, A ;
SANCHEZ, M .
GENERAL RELATIVITY AND GRAVITATION, 1995, 27 (01) :71-84
[4]   Riesz potential estimates for a general class of quasilinear equations [J].
Baroni, Paolo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 53 (3-4) :803-846
[5]   SPACELIKE HYPERSURFACES WITH PRESCRIBED BOUNDARY-VALUES AND MEAN-CURVATURE [J].
BARTNIK, R ;
SIMON, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 87 (01) :131-152
[7]  
Bartnik R, 1987, P CTR MATH ANAL AUST, V12, P24
[8]  
Bayard P, 2003, CALC VAR PARTIAL DIF, V18, P1, DOI 10.1007/s00526-002-0178-5
[9]   Entire spacelike radial graphs in the Minkowski space, asymptotic to the light-cone, with prescribed scalar curvature [J].
Bayard, Pierre ;
Delanoe, Philippe .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (03) :903-915
[10]  
Bernstein S., 1914, COMM SOC MATH KHARKO, V15, P38