Full-Hexacyanometallate Aqueous Redox Flow Batteries Exceeding 1.5 V in an Aqueous Solution

被引:17
作者
Jang, Ji-Eun [1 ]
Kim, Ryeong-ah [1 ]
Jayasubramaniyan, S. [1 ]
Lee, Chanhee [1 ]
Choi, Jieun [1 ]
Lee, Youngdae [1 ]
Kang, Sujin [1 ]
Ryu, Jaechan [1 ]
Lee, Seok Woo [2 ]
Cho, Jaephil [1 ]
Lee, Dong Woog [1 ]
Song, Hyun-Kon [1 ]
Choe, Wonyoung [3 ]
Seo, Dong-Hwa [1 ]
Lee, Hyun-Wook [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Ulsan 44919, South Korea
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[3] UNIST, Dept Chem, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
fast kinetic redox species; hexacyanochromate; hexacyanometallates; redox-flow batteries; strong-field ligands; supporting electrolytes; ENERGY-STORAGE; PERFORMANCE; COMPLEXES; ELECTRODE; VANADIUM; ANOLYTE; DESIGN; COUPLE;
D O I
10.1002/aenm.202300707
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous redox flow batteries (RFBs) have attracted significant attention as energy storage systems by virtue of their inexpensive nature and long-lasting features. Although all-vanadium RFBs exhibit long lifetimes, the cost of vanadium resources fluctuates considerably, and is generally expensive. Iron-chromium RFBs take advantage of utilizing a low-cost and large abundance of iron and chromite ore; however, the redox chemistry of Cr-II/III generally involves strong Jahn-Teller effects. Herein, this work introduces a new Cr-based negolyte coordinated with strong-field ligands capable of mitigating strong Jahn-Teller effects, thereby facilitating low redox potential, high stability, and rapid kinetics. The balanced full-cell configuration features a stable lifetime of 500 cycles with energy density of 14 Wh L-1. With an excessive posolyte, the full-cell can attain a high energy density of 38.6 Wh L-1 as a single electron redox process. Consequently, the proposed system opens new avenues for the development of high-performance RFBs.
引用
收藏
页数:12
相关论文
共 55 条
[11]   THE COMPLEX CYANIDES OF CHROMIUM (II) AND CHROMIUM (0) [J].
EATON, JP ;
NICHOLLS, D .
TRANSITION METAL CHEMISTRY, 1981, 6 (04) :203-206
[12]   Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries [J].
Feng, Ruozhu ;
Zhang, Xin ;
Murugesan, Vijayakumar ;
Holias, Aaron ;
Chen, Ying ;
Shao, Yuyan ;
Walter, Eric ;
Wellala, Nadeesha P. N. ;
Yan, Litao ;
Rosso, Kevin M. ;
Wang, Wei .
SCIENCE, 2021, 372 (6544) :836-+
[13]   Ion exclusion by sub-2-nm carbon nanotube pores [J].
Fornasiero, Francesco ;
Park, Hyung Gyu ;
Holt, Jason K. ;
Stadermann, Michael ;
Grigoropoulos, Costas P. ;
Noy, Aleksandr ;
Bakajin, Olgica .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (45) :17250-17255
[14]  
Frisch, 2016, GAUSSIAN 16 REVISION
[15]  
Goeltz J., 2017, GOELTZ J
[16]   All-Soluble All-Iron Aqueous Redox-Flow Battery [J].
Gong, Ke ;
Xu, Fei ;
Grunewald, Jonathan B. ;
Ma, Xiaoya ;
Zhao, Yun ;
Gu, Shuang ;
Yan, Yushan .
ACS ENERGY LETTERS, 2016, 1 (01) :89-93
[17]   THE SYNTHESIS OF POTASSIUM HEXACYANOCHROMATE-(O) [J].
HEINTZ, EA .
JOURNAL OF INORGANIC & NUCLEAR CHEMISTRY, 1961, 21 (3-4) :262-264
[18]   A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries [J].
Hollas, Aaron ;
Wei, Xiaoliang ;
Murugesan, Vijayakumar ;
Nie, Zimin ;
Li, Bin ;
Reed, David ;
Liu, Jun ;
Sprenkle, Vincent ;
Wang, Wei .
NATURE ENERGY, 2018, 3 (06) :508-514
[19]   The oxidation potential of the chromocyanide-chromicyanide couple and the polarography of the chromium cyanide complexes [J].
Hume, DN ;
Kolthoff, IM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1943, 65 :1897-1901
[20]  
JEFTIC L, 1971, J PHYS CHEM-US, V75, P2381