MPF-FS: A multi-population framework based on multi-objective optimization algorithms for feature selection

被引:1
|
作者
Yang, Jie [1 ]
He, Junjiang [1 ]
Li, Wenshan [1 ,2 ]
Li, Tao [1 ]
Lan, Xiaolong [1 ]
Wang, Yunpeng [1 ]
机构
[1] Sichuan Univ, Sch Cyber Sci & Engn, 24 South Sect 1,Yihuan Rd, Chengdu 610065, Peoples R China
[2] Chengdu Univ Informat Technol, Sch Cyber Sci & Engn, 24 Sect 1,Xuefu Rd,Southwest Airport Econ Dev Zone, Chengdu 610225, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Feature selection; Evolutionary computation; Multi-objective optimization; Genetic algorithm; Artificial bee colony algorithm; GENETIC ALGORITHM;
D O I
10.1007/s10489-023-04696-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature selection algorithms based on evolutionary computation have continued to emerge, and most of them have achieved outstanding results. However, there are two drawbacks when facing high-dimensional datasets: firstly, it is difficult to reduce features effectively, and secondly, the "curse of dimensionality". To alleviate those problems, we take the initial population generation as an entry point and propose a variant initial population generator, which can improve diversity and initialize populations randomly throughout the solution space. However, during the experimental process, it was found that the improved diversity would cause the algorithm to converge too fast and thus lead to premature. Therefore, we introduced multi-population techniques to balance diversity and convergence speed, and finally formed the MPF-FS framework. To prove the effectiveness of this framework, two feature selection algorithms, multi-population multi-objective artificial bee colony algorithm and multi-population non-dominated sorting genetic algorithm II, are implemented based on this framework. Nine well-known public datasets were used in this study, and the results reveal that the two proposed multi-population methods on high-dimensional datasets can reduce more features without reducing (or even improving) classification accuracy, which outperforms the corresponding single-population algorithms. Further compared to the state-of-the-art methods, our method still shows promising results.
引用
收藏
页码:22179 / 22199
页数:21
相关论文
共 50 条
  • [41] Multi-objective evolutionary algorithms based fuzzy optimization
    Sánchez, G
    Jiménez, F
    Gómez-Skarmeta, AF
    2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 1 - 7
  • [42] Preferential Crystallization: Multi-Objective Optimization Framework
    Bhat, Shrikant A.
    Huang, Biao
    AICHE JOURNAL, 2009, 55 (02) : 383 - 395
  • [43] Investigating selection strategies in multi-objective probabilistic model based algorithms
    Strickler, Andrei
    Castro, Olacir, Jr.
    Pozo, Aurora
    Santana, Roberto
    PROCEEDINGS OF 2016 5TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS 2016), 2016, : 7 - 12
  • [44] Feature Selection Using Diversity-Based Multi-objective Binary Differential Evolution
    Wang, Peng
    Xue, Bing
    Liang, Jing
    Zhang, Mengjie
    INFORMATION SCIENCES, 2023, 626 : 586 - 606
  • [45] Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection
    Yang, Deng
    Zhou, Chong
    Wei, Xuemeng
    Chen, Zhikun
    Zhang, Zheng
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 140 (02): : 1563 - 1593
  • [46] Multi-Objective Feature Selection With Missing Data in Classification
    Xue, Yu
    Tang, Yihang
    Xu, Xin
    Liang, Jiayu
    Neri, Ferrante
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2022, 6 (02): : 355 - 364
  • [47] A multi-objective optimization algorithm for feature selection problems
    Benyamin Abdollahzadeh
    Farhad Soleimanian Gharehchopogh
    Engineering with Computers, 2022, 38 : 1845 - 1863
  • [48] Feature Selection via Pareto Multi-objective Genetic Algorithms
    Spolaor, Newton
    Lorena, Ana Carolina
    Lee, Huei Diana
    APPLIED ARTIFICIAL INTELLIGENCE, 2017, 31 (9-10) : 764 - 791
  • [49] Multi-Objective Particle Swarm Optimization-based Feature Selection for Face Recognition
    Larabi-Marie-Sainte, Souad
    Ghouzali, Sanaa
    STUDIES IN INFORMATICS AND CONTROL, 2020, 29 (01): : 99 - 109
  • [50] Multi-objective Optimization Based Recursive Feature Elimination for Process Monitoring
    Shivendra Singh
    Anubha Agrawal
    Hariprasad Kodamana
    Manojkumar Ramteke
    Neural Processing Letters, 2021, 53 : 1081 - 1099