MPF-FS: A multi-population framework based on multi-objective optimization algorithms for feature selection

被引:1
|
作者
Yang, Jie [1 ]
He, Junjiang [1 ]
Li, Wenshan [1 ,2 ]
Li, Tao [1 ]
Lan, Xiaolong [1 ]
Wang, Yunpeng [1 ]
机构
[1] Sichuan Univ, Sch Cyber Sci & Engn, 24 South Sect 1,Yihuan Rd, Chengdu 610065, Peoples R China
[2] Chengdu Univ Informat Technol, Sch Cyber Sci & Engn, 24 Sect 1,Xuefu Rd,Southwest Airport Econ Dev Zone, Chengdu 610225, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Feature selection; Evolutionary computation; Multi-objective optimization; Genetic algorithm; Artificial bee colony algorithm; GENETIC ALGORITHM;
D O I
10.1007/s10489-023-04696-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature selection algorithms based on evolutionary computation have continued to emerge, and most of them have achieved outstanding results. However, there are two drawbacks when facing high-dimensional datasets: firstly, it is difficult to reduce features effectively, and secondly, the "curse of dimensionality". To alleviate those problems, we take the initial population generation as an entry point and propose a variant initial population generator, which can improve diversity and initialize populations randomly throughout the solution space. However, during the experimental process, it was found that the improved diversity would cause the algorithm to converge too fast and thus lead to premature. Therefore, we introduced multi-population techniques to balance diversity and convergence speed, and finally formed the MPF-FS framework. To prove the effectiveness of this framework, two feature selection algorithms, multi-population multi-objective artificial bee colony algorithm and multi-population non-dominated sorting genetic algorithm II, are implemented based on this framework. Nine well-known public datasets were used in this study, and the results reveal that the two proposed multi-population methods on high-dimensional datasets can reduce more features without reducing (or even improving) classification accuracy, which outperforms the corresponding single-population algorithms. Further compared to the state-of-the-art methods, our method still shows promising results.
引用
收藏
页码:22179 / 22199
页数:21
相关论文
共 50 条
  • [21] Global mutual information-based feature selection approach using single-objective and multi-objective optimization
    Han, Min
    Ren, Weijie
    NEUROCOMPUTING, 2015, 168 : 47 - 54
  • [22] A new framework of multi-objective evolutionary algorithms for feature selection and multi-label classification of video data
    Gizem Nur Karagoz
    Adnan Yazici
    Tansel Dokeroglu
    Ahmet Cosar
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 53 - 71
  • [23] Multi-Objective Optimization of Feature Selection Procedure for EEG Signals Classification
    Cimpanu, Corina
    Ferariu, Lavinia
    Dumitriu, Tiberius
    Ungureanu, Florina
    2017 IEEE INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2017, : 434 - 437
  • [24] Particle ranking: An Efficient Method for Multi-Objective Particle Swarm Optimization Feature Selection
    Rashno, Abdolreza
    Shafipour, Milad
    Fadaei, Sadegh
    KNOWLEDGE-BASED SYSTEMS, 2022, 245
  • [25] A multi-objective algorithm for multi-label filter feature selection problem
    Dong, Hongbin
    Sun, Jing
    Li, Tao
    Ding, Rui
    Sun, Xiaohang
    APPLIED INTELLIGENCE, 2020, 50 (11) : 3748 - 3774
  • [26] MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS FOR FILTER BASED FEATURE SELECTION IN CLASSIFICATION
    Xue, Bing
    Cervante, Liam
    Shang, Lin
    Browne, Will N.
    Zhang, Mengjie
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2013, 22 (04)
  • [27] Dynamic multi-objective evolutionary algorithms for single-objective optimization
    Jiao, Ruwang
    Zeng, Sanyou
    Alkasassbeh, Jawdat S.
    Li, Changhe
    APPLIED SOFT COMPUTING, 2017, 61 : 793 - 805
  • [28] Multi-objective test case prioritization based on multi-population cooperative particle swarm optimization
    Wang Hongman
    Li Jinzhong
    Xing Ying
    Zhou Xiaoguang
    The Journal of China Universities of Posts and Telecommunications, 2020, 27 (01) : 38 - 50
  • [29] An adaptive multi-population differential evolution algorithm for continuous multi-objective optimization
    Wang, Xianpeng
    Tang, Lixin
    INFORMATION SCIENCES, 2016, 348 : 124 - 141
  • [30] EEG Multi-Objective Feature Selection Using Temporal Extension
    Ferariu, Lavinia
    Cimpanu, Corina
    Dumitriu, Tiberius
    Ungureanu, Florina
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP), 2018, : 105 - 110