Attribute reduction based on neighborhood constrained fuzzy rough sets

被引:17
|
作者
Hu, Meng [1 ]
Guo, Yanting [2 ]
Chen, Degang [3 ]
Tsang, Eric C. C. [1 ]
Zhang, Qingshuo [1 ]
机构
[1] Macau Univ Sci & Technol, Sch Comp Sci & Engn, Ave Wai Long, Taipa, Taipa, Macau, Peoples R China
[2] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[3] North China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China
关键词
Attribute reduction; Fuzzy rough sets; Neighborhood fuzzy rough sets; Enhanced fuzzy similarity relations; CANCER; MODEL;
D O I
10.1016/j.knosys.2023.110632
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The construction of fuzzy relations is a key issue of fuzzy rough sets. The fuzzy relations generated by the soft distances between samples are more robust than that generated by the hard distances between samples. To improve the ability of fuzzy rough sets in deleting redundant attributes, we propose two enhanced fuzzy similarity relations by fully mining neighborhood information and decision information of samples. Then, we establish the Neighborhood Constrained Fuzzy Rough Sets (NC-FRS) by using the proposed relations to perform attribute reduction. Meanwhile, we design enhanced fuzzy similarity relation-based attribute reduction (EFSR-AR) to select important attributes for classification tasks. Finally, we download three gene expression profiles from NCBI to verify that the proposed algorithm can select genes highly related to tumors, the selected genes are more conducive to tumor classification, and the proposed algorithm has strong anti-noise ability. The comparison results indicate that EFSR-AR does have the ability to combat noise and select some genes highly related to tumors.(c) 2023 Published by Elsevier B.V.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] WalkNAR: A neighborhood rough sets-based attribute reduction approach using random walk
    Li, Haibo
    Xiong, Wuyang
    Li, Yanbin
    Xie, Xiaojun
    APPLIED INTELLIGENCE, 2024, : 7099 - 7117
  • [22] ATTRIBUTE REDUCTION USING DISTANCE-BASED FUZZY ROUGH SETS
    Wang, Changzhong
    Qi, Yali
    He, Qiang
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOL. 2, 2015, : 860 - 865
  • [23] Maximal-Discernibility-Pair-Based Approach to Attribute Reduction in Fuzzy Rough Sets
    Dai, Jianhua
    Hu, Hu
    Wu, Wei-Zhi
    Qian, Yuhua
    Huang, Debiao
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (04) : 2174 - 2187
  • [24] An Attribute Reduction Method Using Neighborhood Entropy Measures in Neighborhood Rough Sets
    Sun, Lin
    Zhang, Xiaoyu
    Xu, Jiucheng
    Zhang, Shiguang
    ENTROPY, 2019, 21 (02)
  • [25] Attribute reduction with fuzzy rough set based on multiobjective neighborhood difference algorithm
    Li B.-Y.
    Xiao J.-M.
    Wang X.-H.
    Kongzhi yu Juece/Control and Decision, 2019, 34 (05): : 947 - 955
  • [26] Attribute Reduction Based on Rough Neighborhood Approximation
    He, Ming
    Du, Yong-ping
    PROCEEDINGS OF THE FIRST INTERNATIONAL WORKSHOP ON EDUCATION TECHNOLOGY AND COMPUTER SCIENCE, VOL I, 2009, : 343 - 345
  • [27] Incremental reduction methods based on granular ball neighborhood rough sets and attribute grouping
    Li, Yan
    Wu, Xiaoxue
    Wang, Xizhao
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2023, 160
  • [28] Parallel attribute reduction in dominance-based neighborhood rough set
    Chen, Hongmei
    Li, Tianrui
    Cai, Yong
    Luo, Chuan
    Fujita, Hamido
    INFORMATION SCIENCES, 2016, 373 : 351 - 368
  • [29] Multi-Label Attribute Reduction Based on Neighborhood Multi-Target Rough Sets
    Zheng, Wenbin
    Li, Jinjin
    Liao, Shujiao
    Lin, Yidong
    SYMMETRY-BASEL, 2022, 14 (08):
  • [30] A Neighborhood Rough Sets-Based Attribute Reduction Method Using Lebesgue and Entropy Measures
    Sun, Lin
    Wang, Lanying
    Xu, Jiucheng
    Zhang, Shiguang
    ENTROPY, 2019, 21 (02)