Attribute reduction based on neighborhood constrained fuzzy rough sets

被引:16
|
作者
Hu, Meng [1 ]
Guo, Yanting [2 ]
Chen, Degang [3 ]
Tsang, Eric C. C. [1 ]
Zhang, Qingshuo [1 ]
机构
[1] Macau Univ Sci & Technol, Sch Comp Sci & Engn, Ave Wai Long, Taipa, Taipa, Macau, Peoples R China
[2] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[3] North China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China
关键词
Attribute reduction; Fuzzy rough sets; Neighborhood fuzzy rough sets; Enhanced fuzzy similarity relations; CANCER; MODEL;
D O I
10.1016/j.knosys.2023.110632
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The construction of fuzzy relations is a key issue of fuzzy rough sets. The fuzzy relations generated by the soft distances between samples are more robust than that generated by the hard distances between samples. To improve the ability of fuzzy rough sets in deleting redundant attributes, we propose two enhanced fuzzy similarity relations by fully mining neighborhood information and decision information of samples. Then, we establish the Neighborhood Constrained Fuzzy Rough Sets (NC-FRS) by using the proposed relations to perform attribute reduction. Meanwhile, we design enhanced fuzzy similarity relation-based attribute reduction (EFSR-AR) to select important attributes for classification tasks. Finally, we download three gene expression profiles from NCBI to verify that the proposed algorithm can select genes highly related to tumors, the selected genes are more conducive to tumor classification, and the proposed algorithm has strong anti-noise ability. The comparison results indicate that EFSR-AR does have the ability to combat noise and select some genes highly related to tumors.(c) 2023 Published by Elsevier B.V.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Parameterized attribute reduction with Gaussian kernel based fuzzy rough sets
    Chen, Degang
    Hu, Qinghua
    Yang, Yongping
    INFORMATION SCIENCES, 2011, 181 (23) : 5169 - 5179
  • [22] A STABLE ATTRIBUTE REDUCTION APPROACH FOR FUZZY ROUGH SETS
    Dou, Huili
    Jiang, Zehua
    Song, Jingjing
    Wang, Pingxin
    Yang, Xibei
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (08) : 1783 - 1795
  • [23] An Attribute Reduction Method Using Neighborhood Entropy Measures in Neighborhood Rough Sets
    Sun, Lin
    Zhang, Xiaoyu
    Xu, Jiucheng
    Zhang, Shiguang
    ENTROPY, 2019, 21 (02)
  • [24] Attribute reduction with fuzzy rough set based on multiobjective neighborhood difference algorithm
    Li B.-Y.
    Xiao J.-M.
    Wang X.-H.
    Kongzhi yu Juece/Control and Decision, 2019, 34 (05): : 947 - 955
  • [25] Attribute Reduction Based on Rough Neighborhood Approximation
    He, Ming
    Du, Yong-ping
    PROCEEDINGS OF THE FIRST INTERNATIONAL WORKSHOP ON EDUCATION TECHNOLOGY AND COMPUTER SCIENCE, VOL I, 2009, : 343 - 345
  • [26] ReliefF Weighted Neighborhood Rough Sets and Attribute Reduction Based on Random Multi-Attribute Subspaces
    Wang, Li
    Computer Engineering and Applications, 2024, 60 (08) : 69 - 77
  • [27] Heterogeneous attribute reduction in noisy system based on a generalized neighborhood rough sets model
    Jing, Siyuan
    She, Kun
    World Academy of Science, Engineering and Technology, 2011, 51 : 1066 - 1071
  • [28] Incremental reduction methods based on granular ball neighborhood rough sets and attribute grouping
    Li, Yan
    Wu, Xiaoxue
    Wang, Xizhao
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2023, 160
  • [29] Dynamic graph-based attribute reduction approach with fuzzy rough sets
    Ma, Lei
    Luo, Chuan
    Li, Tianrui
    Chen, Hongmei
    Liu, Dun
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (10) : 3501 - 3516
  • [30] Dynamic graph-based attribute reduction approach with fuzzy rough sets
    Lei Ma
    Chuan Luo
    Tianrui Li
    Hongmei Chen
    Dun Liu
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3501 - 3516