Standoff Tracking Using DNN-Based MPC With Implementation on FPGA

被引:9
作者
Dong, Fei [1 ,2 ,3 ]
Li, Xingchen [1 ,2 ]
You, Keyou [1 ,2 ]
Song, Shiji [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Beijing, Peoples R China
[3] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Deep neural network (DNN); fieldprogrammable gate array (FPGA); model predictive control (MPC); standoff tracking; unmanned aerial vehicle (UAV); MODEL-PREDICTIVE CONTROL; VECTOR-FIELD; ROBUST;
D O I
10.1109/TCST.2023.3279115
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work studies the standoff tracking problem to drive an unmanned aerial vehicle (UAV) to slide on a desired circle over a moving target at a constant height. We propose a novel Lyapunov guidance vector (LGV) field with tunable convergence rates for the UAV's trajectory planning and a deep neural network (DNN)-based model predictive control (MPC) scheme to track the reference trajectory. Then, we show how to collect samples for training the DNN offline and design an integral module (IM) to refine the tracking performance of our DNN-based MPC. Moreover, the hardware-in-the-loop (HIL) simulation with a field-programmable gate array (FPGA) at 200 MHz demonstrates that our method is a valid alternative to embedded implementations of MPC for addressing complex systems and applications which is impossible for directly solving the MPC optimization problems.
引用
收藏
页码:1998 / 2010
页数:13
相关论文
共 40 条
[1]   Deep Learning-Based Long-Horizon MPC: Robust, High Performing, and Computationally Efficient Control for PMSM Drives [J].
Abu-Ali, Mohammad ;
Berkel, Felix ;
Manderla, Maximilian ;
Reimann, Sven ;
Kennel, Ralph ;
Abdelrahem, Mohamed .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (10) :12486-12501
[2]   The explicit linear quadratic regulator for constrained systems [J].
Bemporad, A ;
Morari, M ;
Dua, V ;
Pistikopoulos, EN .
AUTOMATICA, 2002, 38 (01) :3-20
[3]  
Chan KJ, 2021, P AMER CONTR CONF, P3475, DOI 10.23919/ACC50511.2021.9482849
[4]  
Chen S, 2018, P AMER CONTR CONF, P1520, DOI 10.23919/ACC.2018.8431275
[5]   Large scale model predictive control with neural networks and primal active sets [J].
Chen, Steven W. ;
Wang, Tianyu ;
Atanasov, Nikolay ;
Kumar, Vijay ;
Morari, Manfred .
AUTOMATICA, 2022, 135
[6]   Embedded Model Predictive Control With Certified Real-Time Optimization for Synchronous Motors [J].
Cimini, Gionata ;
Bernardini, Daniele ;
Levijoki, Stephen ;
Bemporad, Alberto .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2021, 29 (02) :893-900
[7]  
Community P, 2013, P AMER CONTR CONF, P1478
[8]  
Domahidi A, 2012, IEEE DECIS CONTR P, P668, DOI 10.1109/CDC.2012.6426855
[9]   Deep Neural Network Based Model Predictive Control for Standoff Tracking by a Quadrotor UAV [J].
Dong, Fei ;
Li, Xingchen ;
You, Keyou ;
Song, Shiji .
2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, :1810-1815
[10]   The isoline tracking in unknown scalar fields with concentration feedback [J].
Dong, Fei ;
You, Keyou .
AUTOMATICA, 2021, 133