Feature augmentation based on information fusion rectification for few-shot image classification

被引:3
|
作者
Wang, Hang [1 ]
Tian, Shengzhao [1 ]
Fu, Yan [1 ,2 ]
Zhou, Junlin [1 ,2 ]
Liu, Jingfa [3 ,4 ]
Chen, Duanbing [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Big Data Res Ctr, Chengdu 611731, Peoples R China
[2] Chengdu Union Big Data Tech Inc, Chengdu 610041, Peoples R China
[3] Guangdong Univ Foreign Studies, Guangzhou Key Lab Multilingual Intelligent Proc, Guangzhou 510006, Peoples R China
[4] Guangdong Univ Foreign Studies, Sch Informat Sci & Technol, Guangzhou 510006, Peoples R China
关键词
D O I
10.1038/s41598-023-30398-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the issue of few-shot image classification, due to lack of sufficient data, directly training the model will lead to overfitting. In order to alleviate this problem, more and more methods focus on non-parametric data augmentation, which uses the information of known data to construct non-parametric normal distribution to expand samples in the support set. However, there are some differences between base class data and new ones, and the distribution of different samples belonging to same class is also different. The sample features generated by the current methods may have some deviations. A new few-shot image classification algorithm is proposed on the basis of information fusion rectification (IFR), which adequately uses the relationship between the data (including the relationship between base class data and new ones, and the relationship between support set and query set in the new class data), to rectify the distribution of support set in the new class data. In the proposed algorithm, feature of support set is expanded through sampling from the rectified normal distribution, so as to augment the data. Compared with other image augmentation algorithms, the experimental results on three few-shot datasets show that the accuracy of the proposed IFR algorithm is improved by 1.84-4.66% on 5-way 1-shot task and 0.99-1.43% on 5-way 5-shot task.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Feature augmentation based on information fusion rectification for few-shot image classification
    Hang Wang
    Shengzhao Tian
    Yan Fu
    Junlin Zhou
    Jingfa Liu
    Duanbing Chen
    Scientific Reports, 13
  • [2] Feature Rectification and Distribution Correction for Few-Shot Image Classification
    Cheng, Qiping
    Liu, Ying
    Zhang, Weidong
    2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024, 2024, : 451 - 457
  • [3] Feature Augmentation Reconstruction Network for Few-Shot Image Classification
    Li, Zhen
    Wang, Lang
    An, Wenjuan
    Qi, Song
    Li, Xiaoxu
    Fei, Xuezhi
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 1571 - 1578
  • [4] Decision fusion for few-shot image classification
    Tianhao Yuan
    Weifeng Liu
    Fei Yan
    Baodi Liu
    International Journal of Multimedia Information Retrieval, 2023, 12
  • [5] Decision fusion for few-shot image classification
    Yuan, Tianhao
    Liu, Weifeng
    Yan, Fei
    Liu, Baodi
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2023, 12 (02)
  • [6] A Multi-Layer Feature Fusion Method for Few-Shot Image Classification
    Gomes, Jaco C.
    Borges, Lurdineide de A. B.
    Borges, Dibio L.
    SENSORS, 2023, 23 (15)
  • [7] Matching Feature Sets for Few-Shot Image Classification
    Afrasiyabi, Arman
    Larochelle, Hugo
    Lalonde, Jean-Francois
    Gagne, Christian
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9004 - 9014
  • [8] Disentangled Feature Representation for Few-Shot Image Classification
    Cheng, Hao
    Wang, Yufei
    Li, Haoliang
    Kot, Alex C.
    Wen, Bihan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 10422 - 10435
  • [9] Few-shot classification with multisemantic information fusion network
    Gao, Ruixuan
    Su, Han
    Prasad, Shitala
    Tang, Peisen
    IMAGE AND VISION COMPUTING, 2024, 141
  • [10] Few-shot imbalanced classification based on data augmentation
    Chao, Xuewei
    Zhang, Lixin
    MULTIMEDIA SYSTEMS, 2023, 29 (05) : 2843 - 2851