共 8 条
Exploration of bacterial community-induced polycyclic aromatic hydrocarbons degradation and humus formation during co-composting of cow manure waste combined with contaminated soil
被引:28
|作者:
Lu, Qian
[1
]
Jiang, Ziwei
[1
]
Feng, Wenxuan
[1
]
Yu, Chunjing
[1
]
Jiang, Fangzhi
[1
]
Huang, Jiayue
[1
]
Cui, Jizhe
[1
]
机构:
[1] Harbin Normal Univ, Coll Life Sci & Technol, Harbin 150025, Peoples R China
关键词:
PAHs degradation;
Humic substances;
Metabolism pathway;
PICRUSt;
ENZYMATIC-ACTIVITY;
PAHS;
BIOREMEDIATION;
BIODEGRADATION;
ACID;
D O I:
10.1016/j.jenvman.2022.116852
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
To solve polycyclic aromatic hydrocarbons (PAHs) pollution, composting was chosen as a remediation method. During composting, the dissipation of PAHs was carried out by resource utilization of organic solid waste and its degradation by bacteria. This study was conducted by co-composting with contaminated soil and cow manure. The results showed that the degradation rates of naphthalene (Nap), phenanthrene (Phe), and benzo[alpha]pyrene (BaP) could reach 82.2%, 79.4%, and 59.6% respectively during composting. Cluster analysis indicated that polyphenol oxidase (PPO), laccase, and protease were important drivers of PAHs transformation. The content of humic substances (HS) was 106.67 g/kg in PAH treatment, which was significantly higher than that in the control group at 65 days. The phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) and network analysis was used to infer the degradation mechanism of PAHs by microorganisms. The degradation of PAHs by PPO was found to have a significant contribution to the formation of HS. It was shown that PAHs and metabolic intermediates were more inclined to be oxidized and decomposed by PPO to form quinone, which in turn condensed with amino acids to form HS. Composting could promote the degradation of PAHs while improving the quality of compost, achieving a win-win situation.
引用
收藏
页数:10
相关论文