A new algorithm for uncertainty quantification for thermal conductivity measurement on polymers with the Haakvoort method using differential scanning calorimetry considering specimen height and real contact area

被引:2
作者
Yagdjian, Harutyun [1 ]
Rommelfanger, Simon [1 ]
Gurka, Martin [1 ]
机构
[1] Leibniz Inst Verbundwerkstoffe GmbH, Erwin Schrodinger Str 58, D-67663 Kaiserslautern, Germany
来源
SN APPLIED SCIENCES | 2023年 / 5卷 / 03期
关键词
Differential scanning calorimetry (DSC); Thermal conductivity; Infrared thermography (IRT); Composite materials; Uncertainty quantification;
D O I
10.1007/s42452-023-05308-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A new algorithm for the quantification of uncertainty in thermal conductivity measurements on polymers according to the Haakvort method is presented. This fast and convenient method using differential scanning calorimetry has been established as DIN EN ISO Standard 11357-8 with an error margin of 5-10%, which is a rather large value when considering that this is an important material parameter for many applications and is often used in combined quantities, such as thermal diffusivity or thermal effusivity. Unfortunately, the DIN EN ISO standard does not provide useful information on the dependence of the error range on the number of specimens or important parameters, such as the height of the specimens or their real contact area. Applying a rigorous statistical approach, based on the law of large numbers (LLN) and different techniques which are also used in well-known methods, such as Monte-Carlo- or Markov chain Monte Carlo (MCMC) algorithms, we establish and investigate a method to optimize the experimental effort to a specific target, especially the number of specimens, the aspect ratio and the real contact surface of the specimen.
引用
收藏
页数:7
相关论文
共 18 条
[1]  
[Anonymous], 1993, Nondestructive Evaluation of Materials by Infrared Thermography
[2]  
[Anonymous], 113578 DIN EN ISO
[3]  
[Anonymous], 2017, E19522017 ASTM
[4]  
[Anonymous], 8302 ISO
[5]  
Bortz J., 2002, Forschungsmethoden und Evaluation fur Humanund Sozialwissenschaftler (3. Auflage) Research methods and evaluation for human and social science, V3rd, DOI [10.1007/978-3-662-07299-8, DOI 10.1007/978-3-662-07299-8]
[6]   Measurement of thermal conductivity by differential scanning calorimetry [J].
Camirand, CP .
THERMOCHIMICA ACTA, 2004, 417 (01) :1-4
[7]   Optimal sparse polynomial chaos expansion for arbitrary probability distribution and its application on global sensitivity analysis [J].
Cao, Lixiong ;
Liu, Jie ;
Jiang, Chao ;
Liu, Guangzhao .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 399
[8]   CONTACT OF NOMINALLY FLAT SURFACES [J].
GREENWOOD, JA ;
WILLIAMSON, JB .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 295 (1442) :300-+
[9]   MEASUREMENT OF THE THERMAL-CONDUCTIVITY OF SOLID SUBSTANCES BY DSC [J].
HAKVOORT, G ;
VANREIJEN, LL ;
AARTSEN, AJ .
THERMOCHIMICA ACTA, 1985, 93 (SEP) :317-320
[10]  
Hedderich J., 2020, Angewandte Statistik-Methodensammlung mit R, DOI [10.1007/978-3-662-62294-0, DOI 10.1007/978-3-662-62294-0]