Novel MIA-LSTM Deep Learning Hybrid Model with Data Preprocessing for Forecasting of PM2.5

被引:6
|
作者
Narkhede, Gaurav [1 ]
Hiwale, Anil [1 ]
Tidke, Bharat [2 ]
Khadse, Chetan [3 ]
机构
[1] MIT World Peace Univ, Sch Elect & Commun Engn, Pune 411038, India
[2] MIT World Peace Univ, Sch Comp Engn & Technol, Pune 411038, India
[3] MIT World Peace Univ, Sch Elect Engn, Pune 411038, India
关键词
MIA-LSTM; data preprocessing; iterative imputation; autoencoder; LSTM; MISSING VALUES; NEURAL-NETWORK; IMPUTATION; AIR; PREDICTION;
D O I
10.3390/a16010052
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Day by day pollution in cities is increasing due to urbanization. One of the biggest challenges posed by the rapid migration of inhabitants into cities is increased air pollution. Sustainable Development Goal 11 indicates that 99 percent of the world's urban population breathes polluted air. In such a trend of urbanization, predicting the concentrations of pollutants in advance is very important. Predictions of pollutants would help city administrations to take timely measures for ensuring Sustainable Development Goal 11. In data engineering, imputation and the removal of outliers are very important steps prior to forecasting the concentration of air pollutants. For pollution and meteorological data, missing values and outliers are critical problems that need to be addressed. This paper proposes a novel method called multiple iterative imputation using autoencoder-based long short-term memory (MIA-LSTM) which uses iterative imputation using an extra tree regressor as an estimator for the missing values in multivariate data followed by an LSTM autoencoder for the detection and removal of outliers present in the dataset. The preprocessed data were given to a multivariate LSTM for forecasting PM2.5 concentration. This paper also presents the effect of removing outliers and missing values from the dataset as well as the effect of imputing missing values in the process of forecasting the concentrations of air pollutants. The proposed method provides better results for forecasting with a root mean square error (RMSE) value of 9.8883. The obtained results were compared with the traditional gated recurrent unit (GRU), 1D convolutional neural network (CNN), and long short-term memory (LSTM) approaches for a dataset of the Aotizhonhxin area of Beijing in China. Similar results were observed for another two locations in China and one location in India. The results obtained show that imputation and outlier/anomaly removal improve the accuracy of air pollution forecasting.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] A Novel Forecasting Model for Solar Power Generation by a Deep Learning Framework With Data Preprocessing and Postprocessing
    Phan, Quoc-Thang
    Wu, Yuan-Kang
    Phan, Quoc-Dung
    Lo, Hsin-Yen
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2023, 59 (01) : 220 - 231
  • [42] An improvement of PM2.5 concentration prediction using optimised deep LSTM
    Choe, Tong-Hyok
    Ho, Chung-Song
    INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2021, 69 (3-4) : 249 - 260
  • [43] Prediction of PM2.5 concentration based on the weighted RF-LSTM model
    Weifu Ding
    Huihui Sun
    Earth Science Informatics, 2023, 16 : 3023 - 3037
  • [44] A hybrid CNN-LSTM model for predicting PM2.5 in Beijing based on spatiotemporal correlation
    Chen Ding
    Guizhi Wang
    Xinyue Zhang
    Qi Liu
    Xiaodong Liu
    Environmental and Ecological Statistics, 2021, 28 : 503 - 522
  • [45] Fine-grained prediction of PM2.5 concentration based on multisource data and deep learning
    Xu, Xiaodi
    Tong, Ting
    Zhang, Wen
    Meng, Lingkui
    ATMOSPHERIC POLLUTION RESEARCH, 2020, 11 (10) : 1728 - 1737
  • [46] A new PM2.5 concentration forecasting system based on AdaBoost-ensemble system with deep learning approach
    Li, Zhongfei
    Gan, Kai
    Sun, Shaolong
    Wang, Shouyang
    JOURNAL OF FORECASTING, 2023, 42 (01) : 154 - 175
  • [47] A novel multi-factor & multi-scale method for PM2.5 concentration forecasting
    Yuan, Wenyan
    Wang, Kaiqi
    Bo, Xin
    Tang, Ling
    Wu, Junjie
    ENVIRONMENTAL POLLUTION, 2019, 255
  • [48] Efficient PM2.5 forecasting using geographical correlation based on integrated deep learning algorithms
    Yeo, Inchoon
    Choi, Yunsoo
    Lops, Yannic
    Sayeed, Alqamah
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (22) : 15073 - 15089
  • [49] Deep Transfer Learning Based on LSTM Model for Reservoir Flood Forecasting
    Zhu, Qiliang
    Wang, Changsheng
    Jin, Wenchao
    Ren, Jianxun
    Yu, Xueting
    INTERNATIONAL JOURNAL OF DATA WAREHOUSING AND MINING, 2024, 20 (01)
  • [50] Forecasting PM2.5 levels in Santiago de Chile using deep learning neural networks
    Menares, Camilo
    Perez, Patricio
    Parraguez, Santiago
    Fleming, Zoe L.
    URBAN CLIMATE, 2021, 38