Novel MIA-LSTM Deep Learning Hybrid Model with Data Preprocessing for Forecasting of PM2.5

被引:6
|
作者
Narkhede, Gaurav [1 ]
Hiwale, Anil [1 ]
Tidke, Bharat [2 ]
Khadse, Chetan [3 ]
机构
[1] MIT World Peace Univ, Sch Elect & Commun Engn, Pune 411038, India
[2] MIT World Peace Univ, Sch Comp Engn & Technol, Pune 411038, India
[3] MIT World Peace Univ, Sch Elect Engn, Pune 411038, India
关键词
MIA-LSTM; data preprocessing; iterative imputation; autoencoder; LSTM; MISSING VALUES; NEURAL-NETWORK; IMPUTATION; AIR; PREDICTION;
D O I
10.3390/a16010052
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Day by day pollution in cities is increasing due to urbanization. One of the biggest challenges posed by the rapid migration of inhabitants into cities is increased air pollution. Sustainable Development Goal 11 indicates that 99 percent of the world's urban population breathes polluted air. In such a trend of urbanization, predicting the concentrations of pollutants in advance is very important. Predictions of pollutants would help city administrations to take timely measures for ensuring Sustainable Development Goal 11. In data engineering, imputation and the removal of outliers are very important steps prior to forecasting the concentration of air pollutants. For pollution and meteorological data, missing values and outliers are critical problems that need to be addressed. This paper proposes a novel method called multiple iterative imputation using autoencoder-based long short-term memory (MIA-LSTM) which uses iterative imputation using an extra tree regressor as an estimator for the missing values in multivariate data followed by an LSTM autoencoder for the detection and removal of outliers present in the dataset. The preprocessed data were given to a multivariate LSTM for forecasting PM2.5 concentration. This paper also presents the effect of removing outliers and missing values from the dataset as well as the effect of imputing missing values in the process of forecasting the concentrations of air pollutants. The proposed method provides better results for forecasting with a root mean square error (RMSE) value of 9.8883. The obtained results were compared with the traditional gated recurrent unit (GRU), 1D convolutional neural network (CNN), and long short-term memory (LSTM) approaches for a dataset of the Aotizhonhxin area of Beijing in China. Similar results were observed for another two locations in China and one location in India. The results obtained show that imputation and outlier/anomaly removal improve the accuracy of air pollution forecasting.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] A novel ensemble reinforcement learning gated unit model for daily PM2.5 forecasting
    Li, Yanfei
    Liu, Zheyu
    Liu, Hui
    AIR QUALITY ATMOSPHERE AND HEALTH, 2021, 14 (03) : 443 - 453
  • [22] Data Driven based PM2.5 Concentration Forecasting
    Li, Haiqin
    Shi, Xuhua
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON BIOLOGICAL ENGINEERING AND PHARMACY (BEP 2016), 2016, 3 : 301 - 304
  • [23] Applying PCA to Deep Learning Forecasting Models for Predicting PM2.5
    Choi, Sang Won
    Kim, Brian H. S.
    SUSTAINABILITY, 2021, 13 (07)
  • [24] PM2.5 concentrations forecasting in Beijing through deep learning with different inputs, model structures and forecast time
    Yang, Jie
    Yan, Rui
    Nong, Mingyue
    Liao, Jiaqiang
    Li, Feipeng
    Sun, Wei
    ATMOSPHERIC POLLUTION RESEARCH, 2021, 12 (09)
  • [25] DESA: a novel hybrid decomposing-ensemble and spatiotemporal attention model for PM2.5 forecasting
    Fang, Shuwei
    Li, Qi
    Karimian, Hamed
    Liu, Hui
    Mo, Yuqin
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (36) : 54150 - 54166
  • [26] Prediction of PM2.5 concentration based on the weighted RF-LSTM model
    Ding, Weifu
    Sun, Huihui
    EARTH SCIENCE INFORMATICS, 2023, 16 (04) : 3023 - 3037
  • [27] A hybrid model for enhanced forecasting of PM2.5 spatiotemporal concentrations with high resolution and accuracy
    Feng, Xiaoxiao
    Zhang, Xiaole
    Henne, Stephan
    Zhao, Yi-Bo
    Liu, Jie
    Chen, Tse-Lun
    Wang, Jing
    ENVIRONMENTAL POLLUTION, 2024, 355
  • [28] A hybrid CNN-LSTM model for predicting PM2.5 in Beijing based on spatiotemporal correlation
    Ding, Chen
    Wang, Guizhi
    Zhang, Xinyue
    Liu, Qi
    Liu, Xiaodong
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2021, 28 (03) : 503 - 522
  • [29] Deep Neural Network for PM2.5 Pollution Forecasting Based on Manifold Learning
    Xie, Jingjing
    2017 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2017, : 236 - 240
  • [30] PM2.5 forecasting for an urban area based on deep learning and decomposition method
    Zaini, Nur'atiah
    Ean, Lee Woen
    Ahmed, Ali Najah
    Malek, Marlinda Abdul
    Chow, Ming Fai
    SCIENTIFIC REPORTS, 2022, 12 (01)