Performance of a deep convolutional neural network for MRI-based vertebral body measurements and insufficiency fracture detection

被引:13
作者
Germann, Christoph [1 ,2 ]
Meyer, Andre N. [3 ]
Staib, Matthias [3 ]
Sutter, Reto [1 ,2 ]
Fritz, Benjamin [1 ,2 ]
机构
[1] Balgrist Univ Hosp, Dept Radiol, Forchstr 340, CH-8008 Zurich, Switzerland
[2] Univ Zurich, Fac Med, Zurich, Switzerland
[3] ScanDiags AG, Zurich, Switzerland
关键词
Artificial intelligence; Neural networks (computer); Magnetic resonance imaging; Spinal fractures; AUTOMATED DETECTION; CLASSIFICATION; AGREEMENT; MODEL;
D O I
10.1007/s00330-022-09354-6
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives The aim is to validate the performance of a deep convolutional neural network (DCNN) for vertebral body measurements and insufficiency fracture detection on lumbar spine MRI. Methods This retrospective analysis included 1000 vertebral bodies in 200 patients (age 75.2 & PLUSMN; 9.8 years) who underwent lumbar spine MRI at multiple institutions. 160/200 patients had >= one vertebral body insufficiency fracture, 40/200 had no fracture. The performance of the DCNN and that of two fellowship-trained musculoskeletal radiologists in vertebral body measurements (anterior/posterior height, extent of endplate concavity, vertebral angle) and evaluation for insufficiency fractures were compared. Statistics included (a) interobserver reliability metrics using intraclass correlation coefficient (ICC), kappa statistics, and Bland-Altman analysis, and (b) diagnostic performance metrics (sensitivity, specificity, accuracy). A statistically significant difference was accepted if the 95% confidence intervals did not overlap. Results The inter-reader agreement between radiologists and the DCNN was excellent for vertebral body measurements, with ICC values of > 0.94 for anterior and posterior vertebral height and vertebral angle, and good to excellent for superior and inferior endplate concavity with ICC values of 0.79-0.85. The performance of the DCNN in fracture detection yielded a sensitivity of 0.941 (0.903-0.968), specificity of 0.969 (0.954-0.980), and accuracy of 0.962 (0.948-0.973). The diagnostic performance of the DCNN was independent of the radiological institution (accuracy 0.964 vs. 0.960), type of MRI scanner (accuracy 0.957 vs. 0.964), and magnetic field strength (accuracy 0.966 vs. 0.957). Conclusions A DCNN can achieve high diagnostic performance in vertebral body measurements and insufficiency fracture detection on heterogeneous lumbar spine MRI.
引用
收藏
页码:3188 / 3199
页数:12
相关论文
共 42 条
[11]   Deep convolutional neural network-based detection of meniscus tears: comparison with radiologists and surgery as standard of reference [J].
Fritz, Benjamin ;
Marbach, Giuseppe ;
Civardi, Francesco ;
Fucentese, Sandro F. ;
Pfirrmann, Christian W. A. .
SKELETAL RADIOLOGY, 2020, 49 (08) :1207-1217
[12]   VERTEBRAL FRACTURE ASSESSMENT USING A SEMIQUANTITATIVE TECHNIQUE [J].
GENANT, HK ;
WU, CY ;
VANKUIJK, C ;
NEVITT, MC .
JOURNAL OF BONE AND MINERAL RESEARCH, 1993, 8 (09) :1137-1148
[13]   Deep Convolutional Neural Network-Based Diagnosis of Anterior Cruciate Ligament Tears Performance Comparison of Homogenous Versus Heterogeneous Knee MRI Cohorts With Different Pulse Sequence Protocols and 1.5-T and 3-T Magnetic Field Strengths [J].
Germann, Christoph ;
Marbach, Giuseppe ;
Civardi, Francesco ;
Fucentese, Sandro F. ;
Fritz, Jan ;
Sutter, Reto ;
Pfirrmann, Christian W. A. ;
Fritz, Benjamin .
INVESTIGATIVE RADIOLOGY, 2020, 55 (08) :499-506
[14]   Improving Radiographic Fracture Recognition Performance and Efficiency Using Artificial Intelligence [J].
Guermazi, Ali ;
Tannoury, Chadi ;
Kompel, Andrew J. ;
Murakami, Akira M. ;
Ducarouge, Alexis ;
Gillibert, Andre ;
Li, Xinning ;
Tournier, Antoine ;
Lahoud, Youmna ;
Jarraya, Mohamed ;
Lacave, Elise ;
Rahimi, Hamza ;
Pourchot, Alois ;
Parisien, Robert L. ;
Merritt, Alexander C. ;
Comeau, Douglas ;
Regnard, Nor-Eddine ;
Hayashi, Daichi .
RADIOLOGY, 2022, 302 (03) :627-636
[15]   Artificial Intelligence in Musculoskeletal Imaging: Current Status and Future Directions [J].
Gyftopoulos, Soterios ;
Lin, Dana ;
Knoll, Florian ;
Doshi, Ankur M. ;
Rodrigues, Tatiane Cantarelli ;
Recht, Michael P. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 213 (03) :506-513
[16]   Feasibility and Implementation of a Deep Learning MR Reconstruction for TSE Sequences in Musculoskeletal Imaging [J].
Herrmann, Judith ;
Koerzdoerfer, Gregor ;
Nickel, Dominik ;
Mostapha, Mahmoud ;
Nadar, Mariappan ;
Gassenmaier, Sebastian ;
Kuestner, Thomas ;
Othman, Ahmed E. .
DIAGNOSTICS, 2021, 11 (08)
[17]   Management of vertebral fragility fractures: a clinical care pathway developed by a multispecialty panel using the RAND/UCLA Appropriateness Method [J].
Hirsch, Joshua A. ;
Beall, Douglas P. ;
Chambers, M. Renee ;
Andreshak, Thomas G. ;
Brook, Allan L. ;
Bruel, Brian M. ;
Deen, H. Gordon ;
Gerszten, Peter C. ;
Kreiner, D. Scott ;
Sansur, Charles A. ;
Tutton, Sean M. ;
van der Meer, Peter ;
Stoevelaar, Herman J. .
SPINE JOURNAL, 2018, 18 (11) :2152-2161
[18]   Deep Learning for Lesion Detection, Progression, and Prediction of Musculoskeletal Disease [J].
Kijowski, Richard ;
Liu, Fang ;
Caliva, Francesco ;
Pedoia, Valentina .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 52 (06) :1607-1619
[19]   A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research [J].
Koo, Terry K. ;
Li, Mae Y. .
JOURNAL OF CHIROPRACTIC MEDICINE, 2016, 15 (02) :155-163
[20]   MEASUREMENT OF OBSERVER AGREEMENT FOR CATEGORICAL DATA [J].
LANDIS, JR ;
KOCH, GG .
BIOMETRICS, 1977, 33 (01) :159-174