Thermal analysis of modified Z-shaped air-cooled battery thermal management system for electric vehicles br

被引:40
|
作者
Shen, Xueyang [1 ,2 ]
Cai, Tianao [1 ,2 ]
He, Chunmin [1 ,2 ]
Yang, Yi [1 ,2 ]
Chen, Miao [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210046, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Flexible Elect Future Technol, Nanjing 210046, Peoples R China
[3] Jinling Inst Technol, Sch Mechatron Engn, Nanjing 211169, Peoples R China
基金
中国博士后科学基金;
关键词
Lithium ion battery; Air cooling; Battery thermal management system; PACK; OPTIMIZATION; PERFORMANCE; SIMULATION; MODULE;
D O I
10.1016/j.est.2022.106356
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The development of new energy vehicles (NEVs) is an effective measure to cope with climate change and mitigate the exhaustion of non-renewable energy sources. Lithium ion power battery is crucial to the reliability and safety of NEVs. In this paper, we design a modified z-shaped air cooling system with non-vertical structure, and study the thermal behavior of lithium iron phosphate power battery. The new system tilts the arrangement of battery packs according to different angles, thus forming a non-vertical flow channel structure. Compared with the traditional Z-shaped air cooling system, the maximum temperature of the battery pack is reduced from the initial 38.15 degrees C to 34.14 degrees C with a decrease of 10.5 %, and the temperature difference is reduced from the initial 2.59 degrees C to 1.97 degrees C with a decrease of 23.9 %. The modified air-cooled battery thermal management system speeds up the heat exchange rate between the air and the battery pack, which is beneficial to improve the cooling performance and temperature uniformity. This study propose a foundation design of the modified z-shaped air cooling system to improve the safety of electric vehicles, which has certain engineering value for the further development of BTMS
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent
    Hong, Sihui
    Zhang, Xinqiang
    Chen, Kai
    Wang, Shuangfeng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 116 : 1204 - 1212
  • [32] Optimization design of the forced air-cooled battery thermal management system with a stepped divergence plenum
    Suo, Yaohong
    Tang, Chengbo
    Yang, Huai
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [33] Numerical study on air-cooled battery thermal management system considering the sheer altitude effect
    Li, Yonghao
    Kong, Benben
    Qiu, Chenghui
    Li, Yu
    Jiang, Yanlong
    APPLIED THERMAL ENGINEERING, 2025, 258
  • [34] Performance study of fin structure in air-cooled thermal management system for column power battery
    Han, Peng
    Wang, Jiayun
    Zhao, Xuemin
    Liu, Jiawei
    Wang, Chen
    She, Xiaohui
    Journal of Energy Storage, 104
  • [35] Multiobjective optimization of air-cooled battery thermal management system based on heat dissipation model
    Chen, Jiahui
    Zhao, Xiaobo
    Wang, Biao
    Zhang, Chenghao
    Xuan, Dongji
    IONICS, 2021, 27 (03) : 1307 - 1322
  • [36] Configuration optimization of battery pack in parallel air-cooled battery thermal management system using an optimization strategy
    Chen, Kai
    Wang, Shuangfeng
    Song, Mengxuan
    Chen, Lin
    APPLIED THERMAL ENGINEERING, 2017, 123 : 177 - 186
  • [37] Design of the structure of battery pack in parallel air-cooled battery thermal management system for cooling efficiency improvement
    Chen, Kai
    Song, Mengxuan
    Wei, Wei
    Wang, Shuangfeng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 132 : 309 - 321
  • [38] Computational study on thermal management for an air-cooled lithium-ion battery
    Morali, Ugur
    ENERGY STORAGE, 2024, 6 (01)
  • [39] Optimization of a Thermal Management System for Battery Electric Vehicles
    Scholl, Manuel
    Minnerup, Katharina
    Reiter, Christoph
    Bernhardt, Benno
    Weisbrodt, Elena
    Newiger, Sebastian
    2019 FOURTEENTH INTERNATIONAL CONFERENCE ON ECOLOGICAL VEHICLES AND RENEWABLE ENERGIES (EVER), 2019,
  • [40] Review on battery thermal management system for electric vehicles
    Kim, Jaewan
    Oh, Jinwoo
    Lee, Hoseong
    APPLIED THERMAL ENGINEERING, 2019, 149 : 192 - 212