Heat Kernels for a Class of Hybrid Evolution Equations

被引:6
作者
Garofalo, Nicola [1 ]
Tralli, Giulio [1 ]
机构
[1] Univ Padua, Dipartimento Ingn Civile & Ambientale DICEA, Via Marzolo 9, I-35131 Padua, Italy
关键词
Heat kernel; CR extension problem; Cauchy problem; FUNDAMENTAL SOLUTION; HEISENBERG; OPERATORS; INEQUALITIES; DEGENERATE;
D O I
10.1007/s11118-022-10003-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to construct (explicit) heat kernels for some hybrid evolution equations which arise in physics, conformal geometry and subelliptic PDEs. Hybrid means that the relevant partial differential operator appears in the form L-1 + L-2 - partial derivative(t), but the variables cannot be decoupled. As a consequence, the relative heat kernel cannot be obtained as the product of the heat kernels of the operators L-1 - partial derivative(t) and L-2 - partial derivative(t). Our approach is new and ultimately rests on the generalised Ornstein-Uhlenbeck operators in the opening of Hormander's 1967 groundbreaking paper on hypoellipticity.
引用
收藏
页码:823 / 856
页数:34
相关论文
共 50 条
  • [41] NOTES ON CONFORMAL PERTURBATION OF HEAT KERNELS
    Zhao, Shiliang
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (10)
  • [42] Heat kernels of the discrete Laguerre operators
    Kostenko, Aleksey
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (02)
  • [43] Heat kernels on weighted manifolds and applications
    Grigor'yan, A
    UBIQUITOUS HEAT KERNEL, 2006, 398 : 93 - 191
  • [44] Analysis on Fractal Spaces and Heat Kernels
    Grigor'yan, Alexander
    DIRICHLET FORMS AND RELATED TOPICS: IN HONOR OF MASATOSHI FUKUSHIMA'S BEIJU (IWDFRT 2022), 2022, 394 : 143 - 159
  • [45] HEAT KERNELS FOR A FAMILY OF GRUSHIN OPERATORS
    Chang, Der-Chen
    Li, Yutian
    METHODS AND APPLICATIONS OF ANALYSIS, 2014, 21 (03) : 291 - 312
  • [46] The asymptotics of heat kernels on Riemannian foliations
    K. Richardson
    Geometric & Functional Analysis GAFA, 1998, 8 : 356 - 401
  • [47] Asymptotic behaviour of the Bessel heat kernels
    Bogus, Kamil
    MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (3-4) : 1601 - 1621
  • [48] Recurrence relations for heat kernels on spheres
    Yu, Chengjie
    Zhao, Feifei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (02)
  • [49] Oscillating heat kernels on ultrametric spaces
    Bendikov, Alexander
    Cygan, Wojciech
    Woess, Wolfgang
    JOURNAL OF SPECTRAL THEORY, 2019, 9 (01) : 195 - 226
  • [50] Asymptotic expansions for anisotropic heat kernels
    Ignat, Liviu I.
    Zuazua, Enrique
    JOURNAL OF EVOLUTION EQUATIONS, 2013, 13 (01) : 1 - 20