Heat Kernels for a Class of Hybrid Evolution Equations

被引:6
作者
Garofalo, Nicola [1 ]
Tralli, Giulio [1 ]
机构
[1] Univ Padua, Dipartimento Ingn Civile & Ambientale DICEA, Via Marzolo 9, I-35131 Padua, Italy
关键词
Heat kernel; CR extension problem; Cauchy problem; FUNDAMENTAL SOLUTION; HEISENBERG; OPERATORS; INEQUALITIES; DEGENERATE;
D O I
10.1007/s11118-022-10003-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to construct (explicit) heat kernels for some hybrid evolution equations which arise in physics, conformal geometry and subelliptic PDEs. Hybrid means that the relevant partial differential operator appears in the form L-1 + L-2 - partial derivative(t), but the variables cannot be decoupled. As a consequence, the relative heat kernel cannot be obtained as the product of the heat kernels of the operators L-1 - partial derivative(t) and L-2 - partial derivative(t). Our approach is new and ultimately rests on the generalised Ornstein-Uhlenbeck operators in the opening of Hormander's 1967 groundbreaking paper on hypoellipticity.
引用
收藏
页码:823 / 856
页数:34
相关论文
共 50 条
  • [1] Heat Kernels for a Class of Hybrid Evolution Equations
    Nicola Garofalo
    Giulio Tralli
    Potential Analysis, 2023, 59 : 823 - 856
  • [2] ON HEAT KERNELS OF A CLASS OF DEGENERATE ELLIPTIC OPERATORS
    Calin, Ovidiu
    Chang, Der-Chen
    Hu, Jishan
    Li, Yutian
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2011, 12 (02) : 309 - 340
  • [3] Two-point problem for a class of evolution equations: II
    V. V. Gorodetskii
    V. I. Mironik
    Differential Equations, 2010, 46 : 523 - 529
  • [4] Two-point problem for a class of evolution equations: II
    Gorodetskii, V. V.
    Mironik, V. I.
    DIFFERENTIAL EQUATIONS, 2010, 46 (04) : 523 - 529
  • [5] Pointwise monotonicity of heat kernels
    Alonso-Oran, Diego
    Chamizo, Fernando
    Martinez, Angel D.
    Mas, Albert
    REVISTA MATEMATICA COMPLUTENSE, 2023, 36 (01): : 207 - 220
  • [6] Heat kernels for a class of degenerate elliptic operators using stochastic method
    Calin, Ovidiu
    Chang, Der-Chen
    Hu, Jishan
    Li, Yutian
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (2-4) : 155 - 168
  • [7] Green function diagonal for a class of heat equations
    Kwiatkowski, Grzegorz
    Leble, Sergey
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (11) : 6084 - 6092
  • [8] INTEGRAL SOLUTIONS TO A CLASS OF NONLOCAL EVOLUTION EQUATIONS
    Garcia-Falset, Jesus
    Reich, Simeon
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2010, 12 (06) : 1031 - 1054
  • [9] HEAT KERNELS OF METRIC TREES AND APPLICATIONS
    Frank, Rupert L.
    Kovarik, Hynek
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (03) : 1027 - 1046
  • [10] EXACT ASYMPTOTIC FORMULAS FOR THE HEAT KERNELS OF SPACE AND TIME-FRACTIONAL EQUATIONS
    Deng, Chang-Song
    Schilling, Rene L.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (04) : 968 - 989