Yttrium doping improves stability of manganese dioxide cathode for aqueous zinc ion batteries

被引:3
|
作者
Liu, Yue [1 ]
Li, Song [1 ]
Wei, Tong [1 ]
Bai, Mingshan [1 ]
Wen, Zhongsheng [1 ]
Sun, Juncai [1 ]
机构
[1] Dalian Maritime Univ, Inst Mat & Technol, Dalian 116026, Peoples R China
关键词
Aqueous zinc-ion battery; Manganese oxide; Yttrium doped; Structural stability; Cyclic stability; CYCLING STABILITY; MNO2; NANOSHEETS; STORAGE;
D O I
10.1016/j.ssi.2024.116473
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Manganese-based oxides are a promising cathode material for aqueous zinc ion batteries. However, structural change and irreversible dissolution of manganese in manganese-based oxides during charging and discharging lead to poor cycling stability, which hinders their large-scale application. Elemental doping is an effective way to regulate the bonding strength and crystal structure of the material. In this paper, YMO materials with nanorodlike structures have been obtained by a hydrothermal method. Y -element doping enhances the stability of the material and improves the electronic and ionic conductivity of the material. The YMO material exhibits excellent electrochemical performance as a cathode material for aqueous zinc ion batteries. The electrode exhibits a high reversible discharge specific capacity of 409.3 mAh g-1 at a current density of 0.1 A g-1, and the electrode capacity hardly decays after 100 charge/discharge cycles, meanwhile, the YMO electrode shows good initial cycling stability even at different charge/discharge current densities. In addition, the YMO electrodes showed long -term cycling stability, with a capacity retention rate of 95.1% after 2000 cycles at a current density of 1 A g-1. The excellent cycling stability of the electrode is mainly due to the improved structural stability of YMO, which is related to the stronger Y-O bonds acting as anchors in the lattice structure of MnO2. Meanwhile, the strong interaction between doped Y3+ and O2- promotes the storage of H+. Structurally stable electrode materials obtained by optimizing doping elements to modulate bonding energy is an effective way to improve the stability of manganese-based materials.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Joint Influence of Nitrogen Doping and Oxygen Vacancy on Manganese Dioxide as a High-Capacity Cathode for Zinc-Ion Batteries
    Zhang, Zining
    Li, Song
    Zhao, Bin
    Zhang, Xiaole
    Wang, Xinyu
    Wen, Zhongsheng
    Ji, Shijun
    Sun, Juncai
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (37) : 20195 - 20203
  • [12] Advances in manganese-based cathode electrodes for aqueous zinc-ion batteries
    Luo, Haixiang
    Zhang, Hui-Juan
    Tao, Yiming
    Yao, Wenli
    Xue, Yuhua
    FRONTIERS IN ENERGY, 2025,
  • [13] An amorphous manganese iron oxide hollow nanocube cathode for aqueous zinc ion batteries
    Jing, Fengyang
    Lv, Chade
    Xu, Liangliang
    Shang, Yaru
    Pei, Jian
    Song, Pin
    Wang, Yuanheng
    Chen, Gang
    Yan, Chunshuang
    JOURNAL OF ENERGY CHEMISTRY, 2023, 87 : 314 - 321
  • [14] Manganese-based materials as cathode for rechargeable aqueous zinc-ion batteries
    Guo, Yixuan
    Zhang, Yixiang
    Lu, Hongbin
    BATTERY ENERGY, 2022, 1 (02):
  • [15] Reaction mechanisms for electrolytic manganese dioxide in rechargeable aqueous zinc-ion batteries
    Tran, Thuy Nguyen Thanh
    Jin, Susi
    Cuisinier, Marine
    Adams, Brian D.
    Ivey, Douglas G.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [16] Stability Optimization Strategy of Aqueous Zinc Ion Batteries
    Gan Y.
    Wang C.
    Li J.
    Zheng J.
    Wan H.
    Wang H.
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2022, 46 (06): : 753 - 775
  • [17] Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries
    Qin, Doudou
    Ding, Junyang
    Liang, Chu
    Liu, Qian
    Feng, Ligang
    Luo, Yang
    Hu, Guangzhi
    Luo, Jun
    Liu, Xijun
    ACTA PHYSICO-CHIMICA SINICA, 2024, 40 (10)
  • [18] The effect of copper doping in α-MnO 2 as cathode material for aqueous Zinc-ion batteries
    Lan, Rong
    Roberts, Alexander
    Gkanas, Evangelos
    Sahib, Ali Jawad Sahib
    Greszta, Agata
    Bhagat, Rohit
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 992
  • [19] Review of ion doping and intercalation strategies for advancing manganese-based oxide cathodes in aqueous zinc-ion batteries
    Ye, Haojie
    Zeng, Xuemei
    Li, Xiaomei
    He, Kun
    Li, Yanshuai
    Yuan, Yifei
    NANO ENERGY, 2025, 136
  • [20] MnO2 superstructure cathode with boosted zinc ion intercalation for aqueous zinc ion batteries
    Zhang, Aina
    Zhang, Xu
    Zhao, Hainan
    Ehrenberg, Helmut
    Chen, Gang
    Saadoune, Ismael
    Fu, Qiang
    Wei, Yingjin
    Wang, Yizhan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 669 : 723 - 730