A Trusted Generative-Discriminative Joint Feature Learning Framework for Remote Sensing Image Classification

被引:0
|
作者
Si, Lingyu [1 ]
Dong, Hongwei [1 ,2 ]
Qiang, Wenwen [1 ]
Song, Zeen [1 ]
Du, Bo [3 ]
Yu, Junzhi [4 ]
Sun, Fuchun [5 ]
机构
[1] Chinese Acad Sci, Inst Software, Sci & Technol Integrated Informat Syst Lab, Beijing 100191, Peoples R China
[2] Harbin Inst Technol, Dept Informat Engn, Harbin 150001, Peoples R China
[3] Wuhan Univ, Natl Engn Res Ctr Multimedia Software, Sch Comp Sci, Hubei Luojia Lab, Wuhan 430079, Peoples R China
[4] Peking Univ, Coll Engn, Beijing 100871, Peoples R China
[5] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100190, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Deep learning; evidential learning; generative feature learning; image classification; remote sensing; SCENE CLASSIFICATION; ATTENTION; AUTOENCODER;
D O I
10.1109/TGRS.2023.3342740
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Remote sensing image (RSI) classification is a popular research topic that aims to assign semantic labels to images acquired from aerial or maritime platforms. Existing deep feature learning methods for this task can be divided into two paradigms: generative and discriminative. The former methods are good at capturing every local detail of images, while the later approaches focus on the most salient area. The significant differences between the two types of methods, both in terms of their underlying mechanisms and practical implementation, motivate us to integrate information acquired by both paradigms by exploiting their complementary strengths. However, this idea faces a challenge that local information in the extracted features, especially those from generative methods, may not be reliable for RSI classification. The reason for this challenge is that, due to the characteristics of the ground observation perspective, some RSIs, while semantically different, exhibit a significant degree of similarity in local details. This phenomenon leads to insufficient discriminability of local features to separate multiple RSI categories, which implies that the classification results overly focused on local information may be unreliable. To address this issue, in this article, we propose a novel framework that integrates generative and discriminative feature learning methods with evidential learning for RSI classification. Our framework uses the Dirichlet distribution to model the predicted probabilities to be integrated, thereby collecting evidence about their reliability. This enables us to integrate multiple features at an evidence level and make reliable decisions, overcoming the unreliabilities of generative-discriminative joint feature learning induced by RSI characteristics. We evaluate the proposed framework on several satellite and shipborne RSI classification datasets. The experimental results show that our method outperforms the state-of-the-art baselines in terms of accuracy and robustness.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [21] Deep learning for remote sensing image classification: A survey
    Li, Ying
    Zhang, Haokui
    Xue, Xizhe
    Jiang, Yenan
    Shen, Qiang
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 8 (06)
  • [22] A Scene Images Diversity Improvement Generative Adversarial Network for Remote Sensing Image Scene Classification
    Pan, Xin
    Zhao, Jian
    Xu, Jun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (10) : 1692 - 1696
  • [23] Joint Distance Transfer Metric Learning for Remote-Sensing Image Classification
    Dong, Yanni
    Liang, Tianyang
    Yang, Cong
    Luo, Hui
    Zhang, Yuxiang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [24] Remote Sensing Image Scene Classification Meets Deep Learning: Challenges, Methods, Benchmarks, and Opportunities
    Cheng, Gong
    Xie, Xingxing
    Han, Junwei
    Guo, Lei
    Xia, Gui-Song
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 3735 - 3756
  • [25] A fast adaptive SVDIncExtreme learning machine framework for remote sensing image classification
    Vidhya, M.
    Sudha, S. K.
    Aji, S.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (15-16) : 5895 - 5916
  • [26] LIL: Lightweight Incremental Learning Approach Through Feature Transfer for Remote Sensing Image Scene Classification
    Lu, Xiaonan
    Sun, Xian
    Diao, Wenhui
    Feng, Yingchao
    Wang, Peijin
    Fu, Kun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [27] Spectral–spatial multi-feature-based deep learning for hyperspectral remote sensing image classification
    Lizhe Wang
    Jiabin Zhang
    Peng Liu
    Kim-Kwang Raymond Choo
    Fang Huang
    Soft Computing, 2017, 21 : 213 - 221
  • [28] Federated Learning Approach for Remote Sensing Scene Classification
    Ben Youssef, Belgacem
    Alhmidi, Lamyaa
    Bazi, Yakoub
    Zuair, Mansour
    REMOTE SENSING, 2024, 16 (12)
  • [29] When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs
    Cheng, Gong
    Yang, Ceyuan
    Yao, Xiwen
    Guo, Lei
    Han, Junwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (05): : 2811 - 2821
  • [30] Hybrid FusionNet: A Hybrid Feature Fusion Framework for Multisource High-Resolution Remote Sensing Image Classification
    Zheng, Yongjie
    Liu, Sicong
    Chen, Hao
    Bruzzone, Lorenzo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14