Machine Learning Models for Predicting Molecular Diffusion in Metal-Organic Frameworks Accounting for the Impact of Framework Flexibility

被引:10
|
作者
Yang, Yuhan [1 ,2 ]
Yu, Zhenzi [1 ]
Sholl, David S. [1 ,3 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[2] Hainan Univ, Sch Chem Engn & Technol, Haikou 570228, Peoples R China
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
DYNAMICS SIMULATION; GAS-DIFFUSION; SEPARATION; MEMBRANE; ADSORPTION; MATRIX; MOFS; CH4; CO2;
D O I
10.1021/acs.chemmater.3c02321
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular diffusion in MOFs plays an important role in determining whether equilibrium can be reached in adsorption-based chemical separations and is a key driving force in membrane-based separations. Molecular dynamics (MD) simulations have shown that in some cases inclusion of framework flexibility in MOF changes predicted molecular diffusivities by orders of magnitude relative to more efficient MD simulations using rigid structures. Despite this, all previous efforts to predict molecular diffusion in MOFs in a high-throughput way have relied on MD data from rigid structures. We use a diverse data set of MD simulations in flexible and rigid MOFs to develop a classification model that reliably predicts whether framework flexibility has a strong impact on molecular diffusion in a given MOF/molecule pair. We then combine this approach with previous high-throughput MD simulations to develop a reliable model that efficiently predicts molecular diffusivities in cases in which framework flexibility can be neglected. The use of this approach is illustrated by making predictions of molecular diffusivities in similar to 70,000 MOF/molecule pairs for molecules relevant to gas separations.
引用
收藏
页码:10156 / 10168
页数:13
相关论文
共 50 条
  • [31] Machine learning potentials for metal-organic frameworks using an incremental learning approach
    Vandenhaute, Sander
    Cools-Ceuppens, Maarten
    DeKeyser, Simon
    Verstraelen, Toon
    Van Speybroeck, Veronique
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [32] Effects of Intrinsic Flexibility on Adsorption Properties of Metal-Organic Frameworks at Dilute and Nondilute Loadings
    Agrawal, Mayank
    Sholl, David S.
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (34) : 31060 - 31068
  • [33] Machine learning: An accelerator for the exploration and application of advanced metal-organic frameworks
    Du, Ruolin
    Xin, Ruiqi
    Wang, Han
    Zhu, Wenkai
    Li, Rui
    Liu, Wei
    CHEMICAL ENGINEERING JOURNAL, 2024, 490
  • [34] Structure-Mechanical Stability Relations of Metal-Organic Frameworks via Machine Learning
    Moghadam, Peyman Z.
    Rogge, Sven M. J.
    Li, Aurelia
    Chow, Chun-Man
    Wieme, Jelle
    Moharrami, Noushin
    Aragones-Anglada, Marta
    Conduit, Gareth
    Gomez-Gualdron, Diego A.
    Van Speybroeck, Veronique
    Fairen-Jimenez, David
    MATTER, 2019, 1 (01) : 219 - 234
  • [35] Interpretable machine learning for accelerating the discovery of metal-organic frameworks for ethane/ethylene separation
    Wang, Zihao
    Zhou, Teng
    Sundmacher, Kai
    CHEMICAL ENGINEERING JOURNAL, 2022, 444
  • [36] Prediction of water stability of metal-organic frameworks using machine learning
    Batra, Rohit
    Chen, Carmen
    Evans, Tania G.
    Walton, Krista S.
    Ramprasad, Rampi
    NATURE MACHINE INTELLIGENCE, 2020, 2 (11) : 704 - +
  • [37] Aromatic Substituent Effects on the Flexibility of Metal-Organic Frameworks
    Hahm, Hyungwoo
    Yoo, Kwangho
    Ha, Hyeonbin
    Kim, Min
    INORGANIC CHEMISTRY, 2016, 55 (15) : 7576 - 7581
  • [38] Machine learning assisted predictions for hydrogen storage in metal-organic frameworks
    Salehi, Khashayar
    Rahmani, Mohammad
    Atashrouz, Saeid
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (85) : 33260 - 33275
  • [39] Analyzing acetylene adsorption of metal-organic frameworks based on machine learning
    Yang, Peisong
    Lu, Gang
    Yang, Qingyuan
    Liu, Lei
    Lai, Xin
    Yu, Duli
    GREEN ENERGY & ENVIRONMENT, 2022, 7 (05) : 1062 - 1070
  • [40] Interpenetration Control, Sorption Behavior, and Framework Flexibility in Zn(II) Metal-Organic Frameworks
    Park, Ji Hye
    Lee, Woo Ram
    Kim, Yeonga
    Lee, Hye Jin
    Ryu, Dae Won
    Phang, Won Ju
    Hong, Chang Seop
    CRYSTAL GROWTH & DESIGN, 2014, 14 (02) : 699 - 704