Machine Learning Models for Predicting Molecular Diffusion in Metal-Organic Frameworks Accounting for the Impact of Framework Flexibility

被引:10
|
作者
Yang, Yuhan [1 ,2 ]
Yu, Zhenzi [1 ]
Sholl, David S. [1 ,3 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[2] Hainan Univ, Sch Chem Engn & Technol, Haikou 570228, Peoples R China
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
DYNAMICS SIMULATION; GAS-DIFFUSION; SEPARATION; MEMBRANE; ADSORPTION; MATRIX; MOFS; CH4; CO2;
D O I
10.1021/acs.chemmater.3c02321
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular diffusion in MOFs plays an important role in determining whether equilibrium can be reached in adsorption-based chemical separations and is a key driving force in membrane-based separations. Molecular dynamics (MD) simulations have shown that in some cases inclusion of framework flexibility in MOF changes predicted molecular diffusivities by orders of magnitude relative to more efficient MD simulations using rigid structures. Despite this, all previous efforts to predict molecular diffusion in MOFs in a high-throughput way have relied on MD data from rigid structures. We use a diverse data set of MD simulations in flexible and rigid MOFs to develop a classification model that reliably predicts whether framework flexibility has a strong impact on molecular diffusion in a given MOF/molecule pair. We then combine this approach with previous high-throughput MD simulations to develop a reliable model that efficiently predicts molecular diffusivities in cases in which framework flexibility can be neglected. The use of this approach is illustrated by making predictions of molecular diffusivities in similar to 70,000 MOF/molecule pairs for molecules relevant to gas separations.
引用
收藏
页码:10156 / 10168
页数:13
相关论文
共 50 条
  • [21] Flexibility of metal-organic frameworks for separations: utilization, suppression and regulation
    Jin, Hua
    Li, Yanshuo
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2018, 20 : 107 - 113
  • [22] Cation-Exchange Approach to Tuning the Flexibility of a Metal-Organic Framework for Gated Adsorption
    Deng, Mingli
    Pan, Yang
    Zhu, Jiaxing
    Chen, Zhenxia
    Sun, Zhengzong
    Sun, Jinyu
    Ling, Yun
    Zhou, Yaming
    Feng, Pingyun
    INORGANIC CHEMISTRY, 2017, 56 (09) : 5069 - 5075
  • [23] Machine learning and high-throughput computational screening of hydrophobic metal-organic frameworks for capture of formaldehyde from air
    Yuan, Xueying
    Deng, Xiaomei
    Cai, Chengzhi
    Shi, Zenan
    Liang, Hong
    Li, Shuhua
    Qiao, Zhiwei
    GREEN ENERGY & ENVIRONMENT, 2021, 6 (05) : 759 - 770
  • [24] Coordination modulated on-off switching of flexibility in a metal-organic framework
    Albalad, Jorge
    Peralta, Ricardo A.
    Huxley, Michael T.
    Tsoukatos, Steven
    Shi, Zhaolin
    Zhang, Yue-Biao
    Evans, Jack D.
    Sumby, Christopher J.
    Doonan, Christian J.
    CHEMICAL SCIENCE, 2021, 12 (44) : 14893 - 14900
  • [25] Methane diffusion mechanism in catenated metal-organic frameworks
    Xue, Chunyu
    Zhou, Zie
    Liu, Bei
    Yang, Qingyuan
    Zhong, Chongli
    MOLECULAR SIMULATION, 2009, 35 (05) : 373 - 380
  • [26] Incorporating Flexibility Effects into Metal-Organic Framework Adsorption Simulations Using Different Models
    Yu, Zhenzi
    Anstine, Dylan M.
    Boulfelfel, Salah Eddine
    Gu, Chenkai
    Colina, Coray M.
    Sholl, David S.
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (51) : 61305 - 61315
  • [27] Interpretable Machine-Learning and Big Data Mining to Predict Gas Diffusivity in Metal-Organic Frameworks
    Guo, Shuya
    Huang, Xiaoshan
    Situ, Yizhen
    Huang, Qiuhong
    Guan, Kexin
    Huang, Jiaxin
    Wang, Wei
    Bai, Xiangning
    Liu, Zili
    Wu, Yufang
    Qiao, Zhiwei
    ADVANCED SCIENCE, 2023, 10 (21)
  • [28] Effect of Framework Flexibility on C8 Aromatic Adsorption at High Loadings in Metal-Organic Frameworks
    Gee, Jason A.
    Sholl, David S.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (01) : 370 - 376
  • [29] Molecular mechanism of hydrocarbons binding to the metal-organic framework
    Sun, Xiuquan
    Wick, Collin D.
    Thallapally, Praveen K.
    McGrail, B. Peter
    Dang, Liem X.
    CHEMICAL PHYSICS LETTERS, 2011, 501 (4-6) : 455 - 460
  • [30] Insights and Heuristics for Predicting Diffusion Rates of Chemical Warfare Agents in Zirconium Metal-Organic Frameworks
    Bukowski, Brandon C.
    Snurr, Randall Q.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (50) : 55608 - 55615