Machine Learning Models for Predicting Molecular Diffusion in Metal-Organic Frameworks Accounting for the Impact of Framework Flexibility

被引:10
|
作者
Yang, Yuhan [1 ,2 ]
Yu, Zhenzi [1 ]
Sholl, David S. [1 ,3 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[2] Hainan Univ, Sch Chem Engn & Technol, Haikou 570228, Peoples R China
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
DYNAMICS SIMULATION; GAS-DIFFUSION; SEPARATION; MEMBRANE; ADSORPTION; MATRIX; MOFS; CH4; CO2;
D O I
10.1021/acs.chemmater.3c02321
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular diffusion in MOFs plays an important role in determining whether equilibrium can be reached in adsorption-based chemical separations and is a key driving force in membrane-based separations. Molecular dynamics (MD) simulations have shown that in some cases inclusion of framework flexibility in MOF changes predicted molecular diffusivities by orders of magnitude relative to more efficient MD simulations using rigid structures. Despite this, all previous efforts to predict molecular diffusion in MOFs in a high-throughput way have relied on MD data from rigid structures. We use a diverse data set of MD simulations in flexible and rigid MOFs to develop a classification model that reliably predicts whether framework flexibility has a strong impact on molecular diffusion in a given MOF/molecule pair. We then combine this approach with previous high-throughput MD simulations to develop a reliable model that efficiently predicts molecular diffusivities in cases in which framework flexibility can be neglected. The use of this approach is illustrated by making predictions of molecular diffusivities in similar to 70,000 MOF/molecule pairs for molecules relevant to gas separations.
引用
收藏
页码:10156 / 10168
页数:13
相关论文
共 50 条
  • [1] Quantitatively Predicting Impact of Structural Flexibility on Molecular Diffusion in Small Pore Metal-Organic Frameworks-A Molecular Dynamics Study of Hypothetical ZIF-8 Polymorphs
    Han, Chu
    Yang, Yuhan
    Sholl, David S.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (37) : 20203 - 20212
  • [2] On the Flexibility of Metal-Organic Frameworks
    Sarkisov, Lev
    Martin, Richard L.
    Haranczyk, Maciej
    Smit, Berend
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (06) : 2228 - 2231
  • [3] A generative artificial intelligence framework based on a molecular diffusion model for the design of metal-organic frameworks for carbon capture
    Park, Hyun
    Yan, Xiaoli
    Zhu, Ruijie
    Huerta, Eliu A.
    Chaudhuri, Santanu
    Cooper, Donny
    Foster, Ian
    Tajkhorshid, Emad
    COMMUNICATIONS CHEMISTRY, 2024, 7 (01)
  • [4] Shaping of Flexible Metal-Organic Frameworks: Combining Macroscopic Stability and Framework Flexibility
    Kriesten, Martin
    Schmitz, Juergen Vargas
    Siegel, Jonas
    Smith, Christopher E.
    Kaspereit, Malte
    Hartmann, Martin
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2019, 2019 (43) : 4700 - 4709
  • [5] Machine learning insights into predicting biogas separation in metal-organic frameworks
    Cooley, Isabel
    Boobier, Samuel
    Hirst, Jonathan D.
    Besley, Elena
    COMMUNICATIONS CHEMISTRY, 2024, 7 (01)
  • [6] Molecular dynamics investigation of the self-diffusion of binary mixture diffusion in the metal-organic framework Zn(tbip) accounting for framework flexibility
    Seehamart, K.
    Chmelik, C.
    Krishna, R.
    Fritzsche, S.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2011, 143 (01) : 125 - 131
  • [7] Application of transfer learning to predict diffusion properties in metal-organic frameworks
    Lim, Yunsung
    Kim, Jihan
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2022, 7 (09): : 1056 - 1064
  • [8] Applications of machine learning in metal-organic frameworks
    Chong, Sanggyu
    Lee, Sangwon
    Kim, Baekjun
    Kim, Jihan
    COORDINATION CHEMISTRY REVIEWS, 2020, 423
  • [9] Predicting metal-organic frameworks as catalysts to fix carbon dioxide to cyclic carbonate by machine learning
    Li, Shuyuan
    Zhang, Yunjiang
    Hu, Yuxuan
    Wang, Bijin
    Sun, Shaorui
    Yang, Xinwu
    He, Hong
    JOURNAL OF MATERIOMICS, 2021, 7 (05) : 1029 - 1038
  • [10] Controlling flexibility of metal-organic frameworks
    Zhang, Jie-Peng
    Zhou, Hao-Long
    Zhou, Dong-Dong
    Liao, Pei-Qin
    Chen, Xiao-Ming
    NATIONAL SCIENCE REVIEW, 2018, 5 (06) : 907 - 919