Rational Buried Interface Engineering of Inorganic NiOx Layer toward Efficient Inverted Perovskite Solar Cells

被引:10
|
作者
Feng, Menglei [1 ]
Wang, Yao [1 ]
Liu, Fang [1 ]
Ren, Meng [1 ]
Wang, Haifei [1 ]
Guo, Jiahao [1 ]
Chen, Yuetian [1 ,2 ]
Miao, Yanfeng [1 ]
Zhao, Yixin [1 ,2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Frontiers Sci Ctr Transformat Mol, Sch Environm Sci & Engn, Shanghai 200240, Peoples R China
[2] Shanghai Noncarbon Energy Convers & Utilizat Inst, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
buried interfaces; energy level alignments; interfacial defect passivations; nickel oxides; HOLE TRANSPORT LAYER; NICKEL-OXIDE; MONOLAYER MODIFICATION; THIN-FILM; PERFORMANCE; EXTRACTION; STABILITY; CRYSTALLIZATION; PASSIVATION; CONTACTS;
D O I
10.1002/solr.202300712
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The power conversion efficiency of inverted perovskite solar cells (PSCs) based on p-i-n structure exceeds 25%, largely owning to the persistent improvement on the quality of heterojunction interface. Nickel oxide (NiOx) of low cost and superior chemical stability is one of the most promising candidates as hole-transport material that is suitable for large-scale fabrication. Meanwhile, the certified efficiency of inorganic NiOx-based inverted PSCs surpasses 25% via improving the poor quality of buried interface contact, which is originated from large offset of valence band energy level, as well as high density of interfacial defects between NiOx hole-transport layer and perovskite film. In this review, the development and progress in buried interface engineering of inorganic NiOx layer are systematically summarized, including strategies on energy level alignment and interfacial defect passivation, which are adopted to promote the better energy level alignment and suppress the defect-assisted nonradiative recombination at interface. On the basis of deeper understanding of buried interface features, some novel materials and methods for interface modification can be rationally designed. Perspectives on future development of efficient and stable large-scale perovskite solar modules and tandem cells are also provided.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Interface modification of sputtered NiOx as the hole-transporting layer for efficient inverted planar perovskite solar cells
    Zheng, Xiaolu
    Song, Zhaoning
    Chen, Zhiliang
    Bista, Sandip Singh
    Gui, Pengbin
    Shrestha, Niraj
    Chen, Cong
    Li, Chongwen
    Yin, Xinxing
    Awni, Rasha A.
    Lei, Hongwei
    Tao, Chen
    Ellingson, Randy J.
    Yan, Yanfa
    Fang, Guojia
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (06) : 1972 - 1980
  • [2] Buried Interface Dielectric Layer Engineering for Highly Efficient and Stable Inverted Perovskite Solar Cells and Modules
    Li, Huan
    Xie, Guanshui
    Wang, Xin
    Li, Sibo
    Lin, Dongxu
    Fang, Jun
    Wang, Daozeng
    Huang, Weixin
    Qiu, Longbin
    ADVANCED SCIENCE, 2023, 10 (19)
  • [3] Construction of Charge Transport Channels at the NiOx/Perovskite Interface through Moderate Dipoles toward Highly Efficient Inverted Solar Cells
    Hu, Yuchao
    Yang, Zheqi
    Cui, Xiang
    Zeng, Peng
    Li, Faming
    Liu, Xiaochun
    Feng, Guanqun
    Liu, Mingzhen
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (11) : 13431 - 13439
  • [4] Obstructing interfacial reaction between NiOx and perovskite to enable efficient and stable inverted perovskite solar cells
    Zhang, Jiaqi
    Long, Juan
    Huang, Zengqi
    Yang, Jia
    Li, Xiang
    Dai, Runying
    Sheng, Wangping
    Tan, Licheng
    Chen, Yiwang
    CHEMICAL ENGINEERING JOURNAL, 2021, 426
  • [5] Suppressing Oxidation at Perovskite-NiOx Interface for Efficient and Stable Tin Perovskite Solar Cells
    Li, Bo
    Zhang, Chunlei
    Gao, Danpeng
    Sun, Xianglang
    Zhang, Shoufeng
    Li, Zhen
    Gong, Jianqiu
    Li, Shuai
    Zhu, Zonglong
    ADVANCED MATERIALS, 2024, 36 (17)
  • [6] Interfacial Modification of NiOx for Highly Efficient and Stable Inverted Perovskite Solar Cells
    Zhou, Yu
    Huang, Xiaozhen
    Zhang, Jinsen
    Zhang, Lin
    Wu, Haotian
    Zhou, Ying
    Wang, Yao
    Wang, Yang
    Fu, Weifei
    Chen, Hongzheng
    ADVANCED ENERGY MATERIALS, 2024, 14 (25)
  • [7] Buried Interface Engineering Enables Efficient, Scalable, and Stable Inverted Perovskite Solar Cells
    Wang, Luqi
    Wang, Chao
    Li, Jing
    Geng, Cong
    Mo, Yanping
    Li, Hanxiao
    Bu, Tongle
    Tong, Jinhui
    Cheng, Yi-Bing
    Huang, Fuzhi
    SOLAR RRL, 2023, 7 (12)
  • [8] Interfacial engineering of sputtered NiOx for enhancing efficiency and stability of inverted perovskite solar cells
    Zhang, Wei
    Shen, Honglie
    Yan, Pingyuan
    Zhang, Jingzhe
    SOLAR ENERGY, 2022, 248 : 128 - 136
  • [9] NiOx thickness dependent improvement of NiOx/Perovskite interface for inverted planar perovskite solar cells
    Zhang, Wei
    Shen, Honglie
    Zhang, Jingzhe
    Zhang, Jiafan
    Lu, Linfeng
    Zhu, Xiangrong
    Li, Dongdong
    OPTICAL MATERIALS, 2022, 132
  • [10] Surface modified NiOx as an efficient hole transport layer in inverted perovskite solar cells
    Yang, Yan
    Chen, Jieda
    Li, Chengyuan
    Zhang, Wei
    Zhang, Shan-Ting
    Li, Dongdong
    Zhang, Jiafan
    Ding, Yi'an
    Lu, Linfeng
    Song, Ye
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (23) : 18522 - 18532