INEQUALITY OF HARDY-TYPE FOR n-CONVEX FUNCTION VIA INTERPOLATION POLYNOMIAL AND GREEN FUNCTIONS

被引:2
|
作者
Pokaz, Dora [1 ]
机构
[1] Univ Zagreb, Fac Civil Engn, Fra Andrije Kacica Miosica 26, Zagreb 10000, Croatia
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2023年 / 26卷 / 04期
关键词
subject classification and phrases; Convex function; Hardy-type inequality; Abel-Gontscharoff interpolating polynomial; Green function; Cebysev functional;
D O I
10.7153/mia-2023-26-59
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain new results on the Hardy-type inequality in the general context, in terms of measure spaces with positive sigma-finite measures. The connection is made between the difference operator derived from the Hardy-type inequality on the one hand and the expression containing the interpolating polynomial of Abel-Gontscharoff and the four Green functions on the other hand. We discuss the n-convexity of the function and consider the result depending on the parity of the indexes n and m. Further results are obtained by using the Holder inequality for conjugate exponents p and q. Finally, we derive upper bounds for the remainder, obtained from the main result, using the Cebysev functional. The Ostrowski-type bound for the generalized Hardy inequality is also given.
引用
收藏
页码:965 / 976
页数:12
相关论文
共 50 条
  • [1] GENERALIZED HARDY-TYPE INEQUALITY VIA LIDSTONE INTERPOLATING POLYNOMIAL AND NEW GREEN FUNCTIONS
    Pokaz, Dora
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2025, 29 (564): : 207 - 220
  • [2] AN INTEGRAL INEQUALITY FOR n-CONVEX FUNCTIONS
    Belbachir, Hacene
    Rahmani, Mourad
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (01): : 117 - 126
  • [3] Hardy-type Inequalities for Convex Functions
    Anthonio, Y. O.
    Rauf, K.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2021, 16 (01): : 263 - 271
  • [4] HERMITE INTERPOLATION WITH GREEN FUNCTIONS AND POSITIVITY OF GENERAL LINEAR INEQUALITIES FOR n-CONVEX FUNCTIONS
    Khan, Asif R.
    Pecaric, Josip E.
    JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 11 (04): : 1 - 15
  • [5] BOUNDS ON THE DERIVATIVES OF A FUNCTION VIA THE THEORY OF N-CONVEX FUNCTIONS
    FARWIG, R
    ZWICK, D
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 118 (01) : 97 - 106
  • [6] LINEAR OPERATORS INEQUALITY FOR n-CONVEX FUNCTIONS AT A POINT
    Pecaric, Josip
    Praljak, Marjan
    Witkowski, Alfred
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (04): : 1201 - 1217
  • [7] Positivity of Sums and Integrals for n-Convex Functions via Abel-Gontscharoff's Interpolating Polynomial and Green Functions
    Khan, Asif R.
    Pecaric, Josip E.
    Praljak, Marjan
    Varosanec, Sanja
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2021, 45 (02) : 197 - 216
  • [8] SOME HARDY-TYPE INEQUALITIES FOR CONVEX FUNCTIONS VIA DELTA FRACTIONAL INTEGRALS
    Wang, Fuzhang
    Hanif, Usama
    Nosheen, Ammara
    Khan, Khuram Ali
    Ahmad, Hijaz
    Nonlaopon, Kamsing
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (01)
  • [9] Analysis of Hardy-type Inequalities Involving Green Functions and Taylor's Polynomial Approximation
    Abbasi, Anjum Mustafa Khan
    Anwar, Matloob
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2025, 18 (01):
  • [10] Positivity of sums and integrals for n-convex functions via the Fink identity and new Green functions
    Khan, Asif R.
    Pecaric, Josip
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (04): : 613 - 627