Electronic transport in T-shaped armchair graphene nanoribbons

被引:0
|
作者
Li, Xizhi [1 ]
Zhong, Chonggui [1 ,2 ,3 ]
机构
[1] Nantong Univ, Sch Phys, Nantong 226019, Peoples R China
[2] Nantong Univ, Res Ctr Quantum Phys & Mat, Nantong 226019, Peoples R China
[3] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
Electronic transport; Field-effect transistor; Tight-binding model; Graphene nanoribbons; Energy filter; Green's function; ON-SURFACE SYNTHESIS; 9-ATOM;
D O I
10.1016/j.physb.2023.415437
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We investigate the transport properties in T-shaped armchair graphene nanoribbons with a zigzag-edge sidearm connected to two normal-conducting leads. For semiconducting armchair graphene nanoribbons, the conduction peaks can be introduced into the gap regime, which may be used as an energy filter. The metallic armchair graphene nanoribbons with a sidearm are proposed for a field-effect transistor where the on and off states are switched by tuning the length or the width of the sidearm. In addition, we demonstrate that both the on and off states are robust to the tunneling barrier between the leads and the graphene nanoribbons.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Optical Imaging and Spectroscopy of Atomically Precise Armchair Graphene Nanoribbons
    Zhao, Sihan
    Barin, Gabriela Bonin
    Cao, Ting
    Overbeck, Jan
    Darawish, Rimah
    Lyu, Tairu
    Drapcho, Steve
    Wang, Sheng
    Dumslaff, Tim
    Narita, Akimitsu
    Calame, Michel
    Muellen, Klaus
    Louie, Steven G.
    Ruffieux, Pascal
    Fasel, Roman
    Wang, Feng
    NANO LETTERS, 2020, 20 (02) : 1124 - 1130
  • [32] Tunable plasmons in regular planar arrays of graphene nanoribbons with armchair and zigzag-shaped edges
    Vacacela Gomez, Cristian
    Pisarra, Michele
    Gravina, Mario
    Sindona, Antonello
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2017, 8 : 172 - 182
  • [33] Electronic structures for armchair-edge graphene nanoribbons under a small uniaxial strain
    W. H. Liao
    B. H. Zhou
    H. Y. Wang
    G. H. Zhou
    The European Physical Journal B, 2010, 76 : 463 - 467
  • [34] Intrinsic properties of bipolarons in armchair graphene nanoribbons
    Silva, Gesiel G.
    da Cunha, Wiliam F.
    Pereira Junior, Marcelo L.
    Roncaratti, Luiz F.
    Ribeiro Junior, Luiz A.
    CHEMICAL PHYSICS LETTERS, 2021, 769
  • [35] Revealing the Electronic Structure of Silicon Intercalated Armchair Graphene Nanoribbons by Scanning Tunneling Spectroscopy
    Deniz, Okan
    Sanchez-Sanchez, Carlos
    Dumslaff, Tim
    Feng, Xinliang
    Narita, Akimitsu
    Muellen, Klaus
    Kharche, Neerav
    Meunier, Vincent
    Fasel, Roman
    Ruffieux, Pascal
    NANO LETTERS, 2017, 17 (04) : 2197 - 2203
  • [36] Heat and Electronic Coupling Transport in Strained Graphene Nanoribbons
    Xia, Minggang
    Rui, Xianfeng
    Diao, J. J.
    ADVANCED SCIENCE LETTERS, 2011, 4 (11-12) : 3658 - 3661
  • [37] Anomalous transport properties in boron and phosphorus co-doped armchair graphene nanoribbons
    Kim, Hyo Seok
    Kim, Seong Sik
    Kim, Han Seul
    Kim, Yong-Hoon
    NANOTECHNOLOGY, 2016, 27 (47)
  • [38] Peculiar transport properties in Z-shaped graphene nanoribbons: A nanoscale NOR gate
    Khoeini, Farhad
    Khoeini, Farzad
    Shokri, Aliasghar
    THIN SOLID FILMS, 2013, 548 : 443 - 448
  • [39] Oxygen-promoted synthesis of armchair graphene nanoribbons on Cu(111)
    Penghui Ji
    Oliver MacLean
    Gianluca Galeotti
    Dominik Dettmann
    Giulia Berti
    Kewei Sun
    Haiming Zhang
    Federico Rosei
    Lifeng Chi
    Science China Chemistry, 2021, 64 : 636 - 641
  • [40] Electronic transport properties of a single chiroptical molecular switch with graphene nanoribbons electrodes
    Xia, Cai-Juan
    Zhang, Bo-Qun
    Su, Yao-Heng
    Tu, Zhe-Yan
    Yan, Xiang-An
    OPTIK, 2016, 127 (11): : 4774 - 4777