A deep learning approach for inpatient length of stay and mortality prediction

被引:3
作者
Chen, Junde [1 ]
Di Qi, Trudi [1 ]
Vu, Jacqueline [1 ]
Wen, Yuxin [1 ]
机构
[1] Chapman Univ, Fowler Sch Engn, Orange, CA 92866 USA
基金
美国国家科学基金会;
关键词
SMOTE; Multi-scale convolution; Atrous causal SPP; Length of stay prediction; Mortality prediction; HOSPITAL MORTALITY; TIME;
D O I
10.1016/j.jbi.2023.104526
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Purpose: Accurate prediction of the Length of Stay (LoS) and mortality in the Intensive Care Unit (ICU) is crucial for effective hospital management, and it can assist clinicians for real-time demand capacity (RTDC) administration, thereby improving healthcare quality and service levels.Methods: This paper proposes a novel one-dimensional (1D) multi-scale convolutional neural network architecture, namely 1D-MSNet, to predict inpatients' LoS and mortality in ICU. First, a 1D multi-scale convolution framework is proposed to enlarge the convolutional receptive fields and enhance the richness of the convolutional features. Following the convolutional layers, an atrous causal spatial pyramid pooling (SPP) module is incorporated into the networks to extract high-level features. The optimized Focal Loss (FL) function is combined with the synthetic minority over-sampling technique (SMOTE) to mitigate the imbalanced-class issue.Results: On the MIMIC-IV v1.0 benchmark dataset, the proposed approach achieves the optimum R-Square and RMSE values of 0.57 and 3.61 for the LoS prediction, and the highest test accuracy of 97.73% for the mortality prediction.Conclusion: The proposed approach presents a superior performance in comparison with other state-of-the-art, and it can effectively perform the LoS and mortality prediction tasks.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Multi-modal learning for inpatient length of stay prediction
    Chen, Junde
    Wen, Yuxin
    Pokojovy, Michael
    Tseng, Tzu-Liang
    McCaffrey, Peter
    Vo, Alexander
    Walser, Eric
    Moen, Scott
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 171
  • [2] Inpatient Length of Stay and Mortality Prediction Utilizing Clinical Time Series Data
    Chen, Junde
    Li, Mason
    Milosevich, Miles
    Le, Tiffany
    Bahsoun, Andrew
    Wen, Yuxin
    IEEE ACCESS, 2025, 13 : 74720 - 74734
  • [3] Inpatient Placement:Associations With Mortality, Cost, and Length of Stay
    Handel, Daniel A.
    Su, Zemin
    Hendry, Nancy
    Mauldin, Patrick
    AMERICAN JOURNAL OF MANAGED CARE, 2018, 24 (07) : E230 - E233
  • [4] Prediction of Length of Stay in the Emergency Department for COVID-19 Patients: A Machine Learning Approach
    ETU, EGBE-ETU
    MONPLAISIR, L. E. S. L. I. E.
    ARSLANTURK, S. U. Z. A. N.
    MASOUD, S. A. R. A.
    AGUWA, C. E. L. E. S. T. I. N. E.
    MARKEVYCH, I. H. O. R.
    MILLER, J. O. S. E. P. H.
    IEEE ACCESS, 2022, 10 : 42229 - 42237
  • [5] Impact of inactive empiric antimicrobial therapy on inpatient mortality and length of stay
    Scarsi, Kimberly K.
    Feinglass, Joe M.
    Scheetz, Marc H.
    Postelnick, Michael J.
    Bolon, Maureen K.
    Noskin, Gary A.
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2006, 50 (10) : 3355 - 3360
  • [6] Advanced Mortality Prediction in Adult ICU: Introducing a Deep Learning Approach in Healthcare
    Simopoulos, Dimitrios
    Kosmidis, Dimitrios
    Koutsouki, Sotiria
    Bonnotte, Nicolas
    Anastassopoulos, George
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, PT I, AIAI 2024, 2024, 711 : 17 - 30
  • [7] Contrastive Multitask Transformer for Hospital Mortality and Length-of-Stay Prediction
    Pick, Fergus
    Xie, Xianghua
    Wu, Lin Yuanbo
    ARTIFICIAL INTELLIGENCE IN HEALTHCARE, PT I, AIIH 2024, 2024, 14975 : 134 - 145
  • [9] Temporal convolutional networks and data rebalancing for clinical length of stay and mortality prediction
    Bednarski, Bryan P.
    Singh, Akash Deep
    Zhang, Wenhao
    Jones, William M.
    Naeim, Arash
    Ramezani, Ramin
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] Advancements in Predictive Analytics: Machine Learning Approaches to Estimating Length of Stay and Mortality in Sepsis
    Ben Khalfallah, Houssem
    Jelassi, Mariem
    Demongeot, Jacques
    Ben Saoud, Narjes Bellamine
    COMPUTATION, 2025, 13 (01)