Modulation of ion transport through nanopores in water desalination: a molecular dynamics study

被引:2
|
作者
Qin, Lanlan [1 ]
Huang, Haiou [2 ]
Zhou, Jian [1 ]
机构
[1] South China Univ Technol, Sch Chem & Chem Engn, Guangdong Prov Key Lab Green Chem Prod Technol, Guangzhou, Peoples R China
[2] Beijing Normal Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Cont, Beijing, Peoples R China
关键词
Ion transport; nanopore; molecular dynamics simulation; water desalination; nano-membrane; REVERSE-OSMOSIS MEMBRANE; GRAPHENE OXIDE NANOSHEETS; PERMEATION; NANOTECHNOLOGY; INSIGHTS; PERFORMANCE; SELECTIVITY; SIMULATION; REJECTION; BARRIERS;
D O I
10.1080/08927022.2023.2268205
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A good understanding of ion transport mechanisms through nanopores is an important issue for the development of advanced water desalination technologies. We use the molecular dynamics simulation method to systematically investigate the translation dynamics of ions through nanopores in the water desalination process by designing four kinds of nano-membranes based on carbon nanomaterials. Results indicate that circular-shaped pore exhibits better water permeability, nevertheless, the slit pore has a lower resistance due to the larger pore area; nanochannel membranes increase the residence time of ions. Fluorination induces more ordered ionic hydration structures, and enhances Na (+) -Cl(- )ion pair association. -OH groups replace partial ionic hydration water molecules and facilitate ions transport into membranes. The -NH3+, -COO- groups can strongly adsorb the oppositely charged ions, and substantially slow down ion dynamics. Functionalisation within nanochannel interior can further enhance interfacial friction and transport resistance, even causing pore blocking by charged groups. The fluorinated nanochannel membrane demonstrates complete rejection of ions with a water permeability coefficient of 1.88 x 10(4) L center dot m(-2)center dot h(-1)center dot bar(-1), breaking the permeability-selectivity trade-off. This study indicates that ion transport in nanopores could be finely modulated to obtain enhanced performance in water desalination.
引用
收藏
页码:1742 / 1757
页数:16
相关论文
共 50 条
  • [41] Molecular dynamics study of water transport through AQP5-R188C mutant causing palmoplantar keratoderma (PPK) using the gating mechanism concept
    Hadidi, Hooman
    Kamali, Reza
    BIOPHYSICAL CHEMISTRY, 2021, 277
  • [42] MOLECULAR DYNAMICS STUDY OF DNA TRANSLOCATION THROUGH GRAPHENE NANOPORES WITH CONTROLLABLE SPEED
    Li, Kun
    Si, Wei
    Sha, Jingjie
    Chen, Yunfei
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2015, VOL 7B, 2016,
  • [43] Molecular dynamics simulation of ion transport in a nanochannel
    Chen Min
    Chen YunFei
    Zhong Wu
    Yang JueKuan
    SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 2008, 51 (07): : 921 - 931
  • [44] Molecular dynamics simulation of ion transport in a nanochannel
    Min Chen
    YunFei Chen
    Wu Zhong
    JueKuan Yang
    Science in China Series E: Technological Sciences, 2008, 51 : 921 - 931
  • [46] Molecular dynamics simulation of ion transport in a nanochannel
    CHEN Min1
    2 China Education Council Key Laboratory of MEMS
    Science in China(Series E:Technological Sciences), 2008, (07) : 921 - 931
  • [47] Osmosis-Driven Water Transport through a Nanochannel: A Molecular Dynamics Simulation Study
    Eun, Changsun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (21) : 1 - 24
  • [48] Enhancing the seawater desalination performance of multilayer reduced graphene oxide membranes by introducing in-plane nanopores: a molecular dynamics simulation study
    Alinia, Z.
    Akbarzadeh, H.
    Zonoz, F. Mohammadi
    Tayebee, R.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (12) : 9722 - 9732
  • [49] Molecular dynamics simulations of shale gas transport in rough nanopores
    Zhao, Yulong
    Luo, Mingyao
    Liu, Lingfu
    Wu, Jianfa
    Chen, Man
    Zhang, Liehui
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 217
  • [50] Nanoporous organosilica membrane for water desalination: Theoretical study on the water transport
    Chua, Yen Thien
    Ji, Guozhao
    Birkett, Greg
    Lin, Chun Xiang Cynthia
    Kleitz, Freddy
    Smart, Simon
    JOURNAL OF MEMBRANE SCIENCE, 2015, 482 : 56 - 66