An Experimental Investigation into the Dry Reciprocating Wear Behavior of Additively Manufactured AlSi10Mg Alloys

被引:6
作者
Vishnu, Vineesh [1 ]
Prabhu, T. Ram [2 ]
Vineesh, K. P. [1 ]
机构
[1] Natl Inst Technol Calicut, Dept Mech Engn, Calicut 673601, Kerala, India
[2] CEMILAC, Def R&D Org, Bangalore 560093, Karnataka, India
关键词
LASER MELTING SLM; MECHANICAL-PROPERTIES; HEAT-TREATMENT; MICROSTRUCTURE; COMPOSITES; PARAMETERS; GRAPHENE; POROSITY; COPPER;
D O I
10.1007/s11837-023-06187-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Direct Metal Laser Sintering (DMLS) is a novel manufacturing method for creating metallic parts from a 3D CAD model. Aluminium alloy (AlSi10Mg), known for its lightweight and strength, is pertinent to the aerospace and automotive sectors. This research investigates the dry sliding wear characteristics of DMLS AlSi10Mg, comparing it with chrome steel and alumina under varying loads (5 N, 10 N, 20 N). Wear morphology was analyzed using scanning electron microscopy with energy dispersive spectroscopy, 3D profilometer, and X-ray diffraction. Results show that friction values ranged from 0.62 to 0.35 for chrome steel and 0.8 to 0.45 for alumina. Wear rates increased with load, notably higher for alumina (74%, 20%, and 33% more than chrome steel at 5 N, 10 N, and 20 N). High wear resistance against chrome steel is due to stable oxide layer prevents direct metallic interaction. Alumina test showed wear mechanisms like adhesion, delamination, and oxidative wear, while chrome steel exhibited adhesion and delamination. Delamination was prominent at higher loads (10-20 N). The study highlights the limitations of AlSi10Mg in applications involving sliding wear against hard counterparts like alumina, emphasizing load and counterpart material considerations for designing durable parts.
引用
收藏
页码:250 / 267
页数:18
相关论文
共 63 条
[1]   Effect of Fe-rich intermetallics on the wear behavior of eutectic Al-Si piston alloy (LM13) [J].
Abouei, V. ;
Saghafian, H. ;
Shabestari, S. G. ;
Zarghami, M. .
MATERIALS & DESIGN, 2010, 31 (07) :3518-3524
[2]  
Aboulkhair N.T., 2014, ADDIT MANUF, V1-4, P77, DOI [DOI 10.1016/J.ADDMA.2014.08.001, 10.1016/j.addma.2014.08.001]
[3]   3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting [J].
Aboulkhair, Nesma T. ;
Simonelli, Marco ;
Parry, Luke ;
Ashcroft, Ian ;
Tuck, Christopher ;
Hague, Richard .
PROGRESS IN MATERIALS SCIENCE, 2019, 106
[4]   On the Precipitation Hardening of Selective Laser Melted AlSi10Mg [J].
Aboulkhair, Nesma T. ;
Tuck, Chris ;
Ashcroft, Ian ;
Maskery, Ian ;
Everitt, Nicola M. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2015, 46A (08) :3337-3341
[5]   Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing [J].
AlMangour, Bandar ;
Yang, Jenn-Ming .
MATERIALS & DESIGN, 2016, 110 :914-924
[6]   Evaluation of the mechanical and wear properties of titanium produced by three different additive manufacturing methods for biomedical application [J].
Attar, H. ;
Bermingham, M. J. ;
Ehtemam-Haghighi, S. ;
Dehghan-Manshadi, A. ;
Kent, D. ;
Dargusch, M. S. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 760 :339-345
[7]   Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior [J].
Brandl, Erhard ;
Heckenberger, Ulrike ;
Holzinger, Vitus ;
Buchbinder, Damien .
MATERIALS & DESIGN, 2012, 34 :159-169
[8]   Influence of process parameters on surface roughness of aluminum parts produced by DMLS [J].
Calignano, F. ;
Manfredi, D. ;
Ambrosio, E. P. ;
Iuliano, L. ;
Fino, P. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 67 (9-12) :2743-2751
[9]   Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity [J].
Cao, Mu ;
Xiong, Ding-Bang ;
Tan, Zhanqiu ;
Ji, Gang ;
Amin-Ahmadi, Behnam ;
Guo, Qiang ;
Fan, Genlian ;
Guo, Cuiping ;
Li, Zhiqiang ;
Zhang, Di .
CARBON, 2017, 117 :65-74
[10]   Interface design of graphene/copper composites by matrix alloying with titanium [J].
Chu, Ke ;
Wang, Fan ;
Wang, Xiao-hu ;
Li, Yu-biao ;
Geng, Zhong-rong ;
Huang, Da-jian ;
Zhang, Hu .
MATERIALS & DESIGN, 2018, 144 :290-303