Multi-Objective Optimal Design of the Wind-Wave Hybrid Platform with the Coupling Interaction

被引:5
|
作者
Deng, Ziwei [1 ,2 ]
Zhang, Baocheng [1 ,2 ]
Miao, Yu [1 ,2 ]
Zhao, Bo [1 ,2 ]
Wang, Qiang [1 ,2 ]
Zhang, Kaisheng [1 ,2 ]
机构
[1] Ocean Univ China, Coll Engn, Dept Mechatron Engn, Qingdao 266100, Peoples R China
[2] Ocean Univ China, Key Lab Ocean Engn Shandong Prov, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
wind and wave energy; hydrodynamic interaction; optimization; POWER TAKE-OFF; ENERGY CONVERTER; OPTIMIZATION; ARRAYS; RESPONSES; TURBINE; SYSTEM; WEC;
D O I
10.1007/s11802-023-5242-0
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
An offshore wind-wave hybrid platform could consistently and cost-effectively supply renewable power. A multi-objective optimization process is proposed for a hybrid platform with hydrodynamic coupling interaction. The effects of various critical structural parameters, spacing values, and wave directions are studied for higher energy capture and offshore platform stability. Approximation models of various key parameters are established to optimize the hybrid system, with the objects of the power capture width ratio and the stability index of the platform. The optimization results are affected by the hydrodynamic coupling interaction, with a tendency to affect the higher frequency of hydrodynamic performance in the hybrid system. After the optimization, an appropriate spacing value effectively improves energy capture performance. The optimal array distance DFf, DFp, the optimal structural parameters Rp, rp, df, rf, and BPTO are 11.57, 12.75, 5.1, 3.3, 1.5, 6.5m, and 80436Nms-1, respectively. The peak value of the wave energy converter capture width ratio in the hybrid system increases by almost 50%, with a 54% decrease in the stability index.
引用
收藏
页码:1165 / 1180
页数:16
相关论文
共 50 条
  • [1] Multi-Objective Optimal Design of the Wind-Wave Hybrid Platform with the Coupling Interaction
    Ziwei Deng
    Baocheng Zhang
    Yu Miao
    Bo Zhao
    Qiang Wang
    Kaisheng Zhang
    Journal of Ocean University of China, 2023, 22 : 1165 - 1180
  • [2] Optimization of wind-wave hybrid system based on wind-wave coupling model
    Liu, Tiesheng
    Liu, Yanjun
    Huang, Shuting
    Xue, Gang
    IET RENEWABLE POWER GENERATION, 2024, 18 (08) : 1407 - 1427
  • [3] EMCO-Based Optimal Layout Design of Hybrid Wind-Wave Energy Converters Array
    Yang, Bo
    Duan, Jinhang
    Yan, Yunfeng
    Liu, Bingqiang
    Huang, Jianxiang
    Jiang, Lin
    Han, Rui
    PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, 2024, 9 (05) : 142 - 161
  • [4] Multi-objective deep reinforcement learning for optimal design of wind turbine blade
    Wang, Zheng
    Zeng, Tiansheng
    Chu, Xuening
    Xue, Deyi
    RENEWABLE ENERGY, 2023, 203 : 854 - 869
  • [5] Performance Analysis of a Floating Wind-Wave Power Generation Platform Based on the Frequency Domain Model
    Chen, Mingsheng
    Deng, Jiang
    Yang, Yi
    Zhou, Hao
    Tao, Tao
    Liu, Shi
    Sun, Liang
    Hua, Lin
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (02)
  • [6] Analysis of a Gyroscopic-Stabilized Floating Offshore Hybrid Wind-Wave Platform
    Fenu, Beatrice
    Attanasio, Valentino
    Casalone, Pietro
    Novo, Riccardo
    Cervelli, Giulia
    Bonfanti, Mauro
    Sirigu, Sergej Antonello
    Bracco, Giovanni
    Mattiazzo, Giuliana
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2020, 8 (06)
  • [8] The Energy Conversion and Coupling Technologies of Hybrid Wind-Wave Power Generation Systems: A Technological Review
    Wang, Bohan
    Sun, Zhiwei
    Zhao, Yuanyuan
    Li, Zhiyan
    Zhang, Bohai
    Xu, Jiken
    Qian, Peng
    Zhang, Dahai
    ENERGIES, 2024, 17 (08)
  • [9] A multi-objective approach for the optimal design of a standalone hybrid renewable energy system
    Patibandla, Anilkumar
    Kollu, Ravindra
    Rayapudi, Srinivasa Rao
    Manyala, Ramalinga Raju
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (12) : 18121 - 18148
  • [10] Robustness considerations in multi-objective optimal design
    Ölvander, J
    JOURNAL OF ENGINEERING DESIGN, 2005, 16 (05) : 511 - 523