Design and Construction of Carbon-Coated Fe3O4/Cr2O3 Heterostructures Nanoparticles as High-Performance Anodes for Lithium Storage

被引:9
|
作者
Liu, Huan [1 ]
Zhang, Weibin [1 ]
Wang, Weili [1 ]
Han, Guifang [1 ]
Zhang, Jingde [1 ]
Zhang, Shiwei [2 ]
Wang, Jianchuan [2 ]
Du, Yong [2 ]
机构
[1] Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Peoples R China
[2] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
anodes; Fe3O4; Cr2O3; heterostructures; lithium-ion batteries; theoretical calculations; ION STORAGE; FE3O4; NANOTUBES; ENERGY; COMPOSITE;
D O I
10.1002/smll.202304264
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transition metal oxides, highly motivated anodes for lithium-ion batteries due to high theoretical capacity, typically afflict by inferior conductivity and significant volume variation. Architecting heterogeneous structures with distinctive interfacial features can effectively regulate the electronic structure to favor electrochemical properties. Herein, an engineered carbon-coated nanosized Fe3O4/Cr2O3 heterostructure with multiple interfaces is synthesized by a facile sol-gel method and subsequent heat treatment. Such ingenious components and structural design deliver rapid Li+ migration and facilitate charge transfer at the heterogeneous interface. Simultaneously, the strong coupling synergistic interactions between Fe3O4, Cr2O3, and carbon layers establish multiple interface structures and built-in electric fields, which accelerate ion/electron transport and effectively eliminate volume expansion. As a result, the multi-interface heterostructure, as a lithium-ion battery anode, exhibits superior cycling stability maintaining a reversible capacity of 651.2 mAh g(-1) for 600 cycles at 2 C. The density functionaltheory calculations not only unravel the electronic structure of the modulation but also illustrate favorable lithium-ion adsorption kinetics. This multi-interface heterostructure strategy offers a pathway for the development of advanced alkali metal-ion batteries.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Elaborately Designed Hierarchical Heterostructures Consisting of Carbon-Coated TiO2(B) Nanosheets Decorated with Fe3O4 Nanoparticles for Remarkable Synergy in High-Rate Lithium Storage
    Xu, Hao
    Zhu, Xiao-Dong
    Sun, Ke-Ning
    Liu, Yi-Tao
    Xie, Xu-Ming
    ADVANCED MATERIALS INTERFACES, 2015, 2 (15):
  • [12] Salt-assisted synthesis of Fe3O4 nanoparticles embedded in hierarchical porous carbon for high-performance lithium storage
    Zhao, Junfeng
    Xie, XueDong
    Xi, Meiqi
    Wang, Zichen
    Yin, Shilong
    Wang, Zhefei
    Yang, Gang
    DIAMOND AND RELATED MATERIALS, 2022, 128
  • [13] Salt-assisted synthesis of Fe3O4 nanoparticles embedded in hierarchical porous carbon for high-performance lithium storage
    Zhao, Junfeng
    Xie, XueDong
    Xi, Meiqi
    Wang, Zichen
    Yin, Shilong
    Wang, Zhefei
    Yang, Gang
    Diamond and Related Materials, 2022, 128
  • [14] Hierarchically structured carbon-coated SnO2-Fe3O4 microparticles with enhanced lithium storage performance
    Chai, Xiaohan
    Shi, Chunsheng
    Liu, Enzuo
    Li, Jiajun
    Zhao, Naiqin
    He, Chunnian
    APPLIED SURFACE SCIENCE, 2016, 361 : 1 - 10
  • [15] Carbon-coated Fe2O3 nanocrystals with enhanced lithium storage capability
    Chai, Xiaohan
    Shi, Chunsheng
    Liu, Enzuo
    Li, Jiajun
    Zhao, Naiqin
    He, Chunnian
    APPLIED SURFACE SCIENCE, 2015, 347 : 178 - 185
  • [16] Conformal Fe3O4 Sheath on Aligned Carbon Nanotube Scaffolds as High-Performance Anodes for Lithium Ion Batteries
    Wu, Yang
    Wei, Yang
    Wang, Jiaping
    Jiang, Kaili
    Fan, Shoushan
    NANO LETTERS, 2013, 13 (02) : 818 - 823
  • [17] Fe3O4 nanoflakes in an N-doped carbon matrix as high-performance anodes for lithium ion batteries
    Guo, Cong
    Wang, Lili
    Zhu, Yongchun
    Wang, Danfeng
    Yang, Qianqian
    Qian, Yitai
    NANOSCALE, 2015, 7 (22) : 10123 - 10129
  • [18] Design and synthesis of carbon-coated α-Fe2O3@Fe3O4 heterostructured as anode materials for lithium ion batteries
    Liu, Huan
    Luo, Shao-hua
    Hu, Dong-bei
    Liu, Xin
    Wang, Qing
    Wang, Zhi-yuan
    Wang, Ying-ling
    Chang, Long-jiao
    Liu, Yan-guo
    Yi, Ting-Feng
    Zhang, Ya-hui
    Hao, Ai-min
    APPLIED SURFACE SCIENCE, 2019, 495
  • [19] The effects of binders on the lithium storage of Fe3O4/NiO heterostructures
    Canping Zhang
    Qin Zhou
    Hairui Wang
    Jianwen Liu
    Yanqing Zhang
    Shiquan Wang
    Ionics, 2023, 29 : 3573 - 3584
  • [20] The effects of binders on the lithium storage of Fe3O4/NiO heterostructures
    Zhang, Canping
    Zhou, Qin
    Wang, Hairui
    Liu, Jianwen
    Zhang, Yanqing
    Wang, Shiquan
    IONICS, 2023, 29 (09) : 3573 - 3584