An Improved Deep Learning Model for DDoS Detection Based on Hybrid Stacked Autoencoder and Checkpoint Network

被引:9
|
作者
Mousa, Amthal K. [1 ]
Abdullah, Mohammed Najm [1 ]
机构
[1] Univ Technol Iraq, Comp Engn Dept, POB 10071, Baghdad, Iraq
来源
FUTURE INTERNET | 2023年 / 15卷 / 08期
关键词
DDoS detection; distributed denial of service; software defined networking; SDN; network security; ATTACK DETECTION;
D O I
10.3390/fi15080278
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The software defined network (SDN) collects network traffic data and proactively manages networks. SDN's programmability makes it excellent for developing distributed applications, cybersecurity, and decentralized network control in multitenant data centers. This exceptional architecture is vulnerable to security concerns, such as distributed denial of service (DDoS) attacks. DDoS attacks can be very serious due to the fact that they prevent authentic users from accessing, temporarily or indefinitely, resources they would normally expect to have. Moreover, there are continuous efforts from attackers to produce new techniques to avoid detection. Furthermore, many existing DDoS detection methods now in use have a high potential for producing false positives. This motivates us to provide an overview of the research studies that have already been conducted in this area and point out the strengths and weaknesses of each of those approaches. Hence, adopting an optimal detection method is necessary to overcome these issues. Thus, it is crucial to accurately detect abnormal flows to maintain the availability and security of the network. In this work, we propose hybrid deep learning algorithms, which are the long short-term memory network (LSTM) and convolutional neural network (CNN) with a stack autoencoder for DDoS attack detection and checkpoint network, which is a fault tolerance strategy for long-running processes. The proposed approach is trained and tested with the aid of two DDoS attack datasets in the SDN environment: the DDoS attack SDN dataset and Botnet dataset. The results show that the proposed model achieves a very high accuracy, reaching 99.99% in training, 99.92% in validation, and 100% in precision, recall, and F1 score with the DDoS attack SDN dataset. Also, it achieves 100% in all metrics with the Botnet dataset. Experimental results reveal that our proposed model has a high feature extraction ability and high performance in detecting attacks. All performance metrics indicate that the proposed approach is appropriate for a real-world flow detection environment.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] DDoS Attack Detection Method Based on Improved KNN With the Degree of DDoS Attack in Software-Defined Networks
    Dong, Shi
    Sarem, Mudar
    IEEE ACCESS, 2020, 8 : 5039 - 5048
  • [42] Design of IoT Network using Deep Learning-based Model for Anomaly Detection
    Varalakshmi, Sudha
    Premnath, S. P.
    Yogalakshmi, V
    Vijayalakshmi, P.
    Kavitha, V. R.
    Vimalarani, G.
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 216 - 220
  • [43] Advanced SDN-based network security: an ensemble optimized deep learning-based framework for mitigating DDoS attacks with intrusion detection
    Dandugudum Mahesh
    Sampath Kumar Tallapally
    Cluster Computing, 2025, 28 (5)
  • [44] An Online Network Intrusion Detection Model Based on Improved Regularized Extreme Learning Machine
    Tang, Yanqiang
    Li, Chenghai
    IEEE ACCESS, 2021, 9 : 94826 - 94844
  • [45] Deep Learning Models Comparison in binary context for DDoS Attack Detection in Software-Defined Network
    Zaidoun, Ameur Salem
    Lachiri, Zied
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES, SIGNAL AND IMAGE PROCESSING, ATSIP 2024, 2024, : 105 - 109
  • [46] DDoS Attack Detection Method Based on Linear Prediction Model
    Cheng, Jieren
    Yin, Jianping
    Wu, Chengkun
    Zhang, Boyun
    Liu, Yun
    EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PROCEEDINGS, 2009, 5754 : 1004 - +
  • [47] Flow-Based DDoS Detection Using Deep Neural Network with Radial Basis Function Neural Network
    Leung, Ting-Chung
    Lee, Chung-Nan
    PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, : 1774 - 1779
  • [48] Network intrusion detection methods based on deep learning
    Li X.
    Zhang S.
    Recent Patents on Engineering, 2021, 15 (04):
  • [49] Deep Learning Approach for Network Intrusion Detection in Software Defined Networking
    Tang, Tuan A.
    Mhamdi, Lotfi
    McLernon, Des
    Zaidi, Syed Ali Raza
    Ghogho, Mounir
    2016 INTERNATIONAL CONFERENCE ON WIRELESS NETWORKS AND MOBILE COMMUNICATIONS (WINCOM), 2016, : P258 - P263
  • [50] Feature Subset Selection Hybrid Deep Belief Network Based Cybersecurity Intrusion Detection Model
    Alissa, Khalid A.
    Shaiba, Hadil
    Gaddah, Abdulbaset
    Yafoz, Ayman
    Alsini, Raed
    Alghushairy, Omar
    Aziz, Amira Sayed A.
    Al Duhayyim, Mesfer
    ELECTRONICS, 2022, 11 (19)